# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a309444 Showing 1-1 of 1 %I A309444 #10 Aug 03 2019 14:18:38 %S A309444 0,4,9,59,559,3059,12434,59309,371809,371809,8184309,27715559, %T A309444 76543684,320684309,1541387434,25955449934,86990606184,392166387434, %U A309444 2680984746809,14125076543684,52272049199934,338374344121809,2245722976934309,7014094558965559,42776881424199934 %N A309444 The successive approximations up to 5^n for 5-adic integer 4^(1/3). %F A309444 a(0) = 0 and a(1) = 4, a(n) = a(n-1) + 3 * (a(n-1)^3 - 4) mod 5^n for n > 1. %e A309444 a(1) = ( 4)_5 = 4, %e A309444 a(2) = ( 14)_5 = 9, %e A309444 a(3) = ( 214)_5 = 59, %e A309444 a(4) = (4214)_5 = 559. %o A309444 (PARI) {a(n) = truncate((4+O(5^n))^(1/3))} %Y A309444 Cf. A309443. %Y A309444 Expansions of p-adic integers: %Y A309444 A268922, A269590 (5-adic, sqrt(-4)); %Y A309444 A048898, A048899 (5-adic, sqrt(-1)); %Y A309444 A290567 (5-adic, 2^(1/3)); %Y A309444 A290568 (5-adic, 3^(1/3)). %K A309444 nonn %O A309444 0,2 %A A309444 _Seiichi Manyama_, Aug 03 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE