# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a307179 Showing 1-1 of 1 %I A307179 #22 Apr 10 2019 12:24:27 %S A307179 -25,-8,-3,0,24,27,32,49 %N A307179 Numbers k such that k = i*j = 6*i + j, where i and j are integers %C A307179 The sequence can be found by solving the equality i*j = 6*i + j. Re-arranging for j gives j = 6 + 6/(i-1). As both i and j must be integers this implies i - 1 must divide 6, thus the only values for i are -5,-2,-1,0,2,3,4,7. Finding the corresponding j and multiplying gives the 8 sequences values. %C A307179 In general if we replace 6 by n, then the number of solutions will be 2*A000005(n), the lowest value will be -(n - 1)^2, and the highest value will be (n + 1)^2. %C A307179 For values k>=0 this sequence gives the possible point scores in Australian Rules Football which equal the corresponding number of goals (worth six points) times the number of behinds (worth one point). %C A307179 The number of solutions, in this case 8, is given by A062011(6). _Robert G. Wilson v_, Apr 10 2019 %e A307179 The 8 solutions are: %e A307179 -------------- %e A307179 i j k %e A307179 -------------- %e A307179 -5 5 -25 %e A307179 -2 4 -8 %e A307179 -1 3 -3 %e A307179 0 0 0 %e A307179 2 12 24 %e A307179 3 9 27 %e A307179 4 8 32 %e A307179 7 7 49 %Y A307179 Cf. A000005 %K A307179 sign,fini,full %O A307179 1,1 %A A307179 _Scott R. Shannon_, Mar 27 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE