# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a302258 Showing 1-1 of 1 %I A302258 #54 Jul 07 2021 08:36:39 %S A302258 1,4,3,8,7,7,6,8,7,7,5,0,3,9,3,3,8,0,2,1,4,6,6,7,1,6,0,1,5,4,3,9,1,1, %T A302258 5,9,5,1,9,9,0,6,9,4,2,3,1,4,8,0,9,9,1,9,1,0,3,2,6,2,3,0,6,3,5,0,1,2, %U A302258 9,5,4,0,5,2,7,6,7,9,3,7,3,9,7,5,5,7,2 %N A302258 Decimal expansion of the second radiation constant c_2 in meter-kelvin. %C A302258 Appears as a term in the Sakuma-Hattori equation for the electromagnetic signal from the thermal radiation emitted by an ideal black body of a given temperature. %C A302258 It also appears in Planck's law when expressed in terms of the wavenumber. - _Charles R Greathouse IV_, Jun 25 2021 %C A302258 The exact value, following the 2019 redefinition of SI units, is 272115870842319/18913000000000000. Hence, periodic with period 18912. - _Charles R Greathouse IV_, Jun 25 2021 %C A302258 In natural (Planck) units this is 2*Pi = A019692. - _Charles R Greathouse IV_, Jul 07 2021 %H A302258 NIST, CODATA Value: second radiation constant %H A302258 Wikipedia, 2019 redefinition of the SI base units %H A302258 Wikipedia, Sakuma-Hattori equation %H A302258 Index entries for linear recurrences with constant coefficients, order 9457. %F A302258 c_2 = h*c/k where k is Planck's constant, c is the speed of light in a vacuum, and k is the Boltzmann constant. - _Charles R Greathouse IV_, Jun 25 2021 %e A302258 0.014387768775039338021466716015439115951990694231480991910326230635012954... m K. %o A302258 (PARI) period(r,base=10)= %o A302258 { %o A302258 my(d=denominator(r),f=factor(base)[,1]); %o A302258 for(i=1,#f, %o A302258 d /= f[i]^valuation(d,f[i]) %o A302258 ); %o A302258 znorder(Mod(base,d)); %o A302258 } %o A302258 rationalNumberOrder(r,base=10)= %o A302258 { %o A302258 my(f=factor(base)[,1],t,L,x='x,P); %o A302258 for(i=1,#f, %o A302258 t=valuation(r,f[i]); %o A302258 if(t<0, r*=f[i]^-t) %o A302258 ); %o A302258 r = frac(r); %o A302258 L = period(r, base); %o A302258 P = Polrev(digits(r*(base^L-1))); %o A302258 poldegree(denominator(P/(1-x^L))); %o A302258 } %o A302258 rationalNumberOrder(272115870842319/18913000000000000) \\ _Kevin Ryde_ and _Charles R Greathouse IV_, Jul 05 2021 %Y A302258 Cf. A003678, A070063, A003676. %K A302258 nonn,cons,easy %O A302258 -1,2 %A A302258 _Felix Fröhlich_, Apr 12 2018 %E A302258 More terms from _Charles R Greathouse IV_, Jun 25 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE