# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a299276
Showing 1-1 of 1
%I A299276 #12 Oct 03 2018 17:40:10
%S A299276 1,5,14,31,59,101,161,242,347,479,641,837,1070,1343,1659,2021,2433,
%T A299276 2898,3419,3999,4641,5349,6126,6975,7899,8901,9985,11154,12411,13759,
%U A299276 15201,16741,18382,20127,21979,23941,26017,28210,30523,32959,35521,38213,41038
%N A299276 Partial sums of A008137.
%C A299276 Euler transform of length 6 sequence [5, -1, 1, -1, 1, -1]. - _Michael Somos_, Oct 03 2018
%H A299276 Colin Barker, Table of n, a(n) for n = 0..1000
%H A299276 Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,1,-3,3,-1).
%F A299276 From _Colin Barker_, Feb 11 2018: (Start)
%F A299276 G.f.: (1 + x)^3*(1 - x + x^2)*(1 + x^2) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)).
%F A299276 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8) for n>7.
%F A299276 (End)
%F A299276 a(n) = -a(-1-n) for all n in Z.
%e A299276 G.f. = 1 + 5*x + 14*x^2 + 31*x^3 + 59*x^4 + 101*x^5 + 161*x^6 + ... - _Michael Somos_, Oct 03 2018
%t A299276 a[ n_] := (8 n^3 + 12 n^2 + 40 n + 18 - {3, 3, 0, -3, -3, 3}[[Mod[n, 5] + 1]]) / 15; (* _Michael Somos_, Oct 03 2018 *)
%o A299276 (PARI) Vec((1 + x)^3*(1 - x + x^2)*(1 + x^2) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ _Colin Barker_, Feb 11 2018
%o A299276 (PARI) {a(n) = (8*n^3 + 12*n^2 + 40*n + 18 - 3*(n%5<2) + 3*(n%5>2)) / 15}; /* _Michael Somos_, Oct 03 2018 */
%Y A299276 Cf. A008137.
%Y A299276 The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
%K A299276 nonn,easy
%O A299276 0,2
%A A299276 _N. J. A. Sloane_, Feb 10 2018
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE