# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a296758 Showing 1-1 of 1 %I A296758 #7 Jan 27 2023 19:27:02 %S A296758 15,30,31,45,46,47,60,61,62,63,75,76,77,78,79,90,91,92,93,94,95,105, %T A296758 106,107,108,109,110,111,120,121,122,123,124,125,126,127,135,136,137, %U A296758 138,139,140,141,142,143,150,151,152,153,154,155,156,157,158,159,165 %N A296758 Numbers whose base-15 digits d(m), d(m-1), ..., d(0) have #(rises) < #(falls); see Comments. %C A296758 A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296756-A296758 partition the natural numbers. See the guide at A296712. %H A296758 Clark Kimberling, Table of n, a(n) for n = 1..10000 %e A296758 The base-15 digits of 15^5 are 1, 0, 0, 0, 0, 0; here #(rises) = 0 and #(falls) = 1, so 15^5 is in the sequence. %t A296758 z = 200; b = 15; d[n_] := Sign[Differences[IntegerDigits[n, b]]]; %t A296758 Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296756 *) %t A296758 Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296757 *) %t A296758 Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296758 *) %Y A296758 Cf. A296756, A296757, A296712. %K A296758 nonn,base,easy %O A296758 1,1 %A A296758 _Clark Kimberling_, Jan 08 2018 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE