# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a296660 Showing 1-1 of 1 %I A296660 #19 Mar 01 2024 02:05:55 %S A296660 1,2,20,232,3728,74528,1788736,50084480,1602703616,57697329664, %T A296660 2307893187584,101547300251648,4874270412083200,253462061428318208, %U A296660 14193875439985836032,851632526399150129152,54504481689545608331264,3706304754889101366394880 %N A296660 Expansion of the e.g.f. exp(-2*x)/(1-4*x). %C A296660 Binomial self-convolution of sequence A296618. %F A296660 E.g.f.: exp(-2*x)/(1-4*x). %F A296660 a(n) = Sum_{k=0..n} binomial(n,k)*4^k*k!*(-2)^(n-k). %F A296660 Sum_{k=0..n} binomial(n,k)*2^(n-k)*a(k) = 4^n n!. %F A296660 a(n+1)-4*(n+1)*a(n) = (-2)^(n+1). %F A296660 D-finite with recurrence a(n+2)-(4*n+6)*a(n+1)-8*(n+1)*a(n) = 0. %F A296660 From _Vaclav Kotesovec_, Dec 18 2017: (Start) %F A296660 a(n) = exp(-1/2) * 4^n * Gamma(n + 1, -1/2). %F A296660 a(n) ~ n! * exp(-1/2) * 4^n. (End) %t A296660 CoefficientList[Series[Exp[-2x]/(1-4x),{x,0,12}],x]Range[0,12]! %t A296660 Table[Sum[Binomial[n, k] 4^k k! (-2)^(n-k), {k, 0, n}], {n, 0, 12}] %o A296660 (Maxima) makelist(sum(binomial(n,k)*4^k*k!*(-2)^(n-k),k,0,n),n,0,12); %o A296660 (PARI) x='x+O('x^99); Vec(serlaplace(exp(-2*x)/(1-4*x))) \\ _Altug Alkan_, Dec 18 2017 %Y A296660 Cf. A001907, A056545, A097820, A296618. %K A296660 nonn %O A296660 0,2 %A A296660 _Emanuele Munarini_, Dec 18 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE