# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a292524
Showing 1-1 of 1
%I A292524 #36 May 19 2021 16:47:44
%S A292524 0,1,2,5,15,44,133,398,1194,3582,10747,32240,96720,290159,870478,
%T A292524 2611435,7834305,23502914,70508742,211526225,634578675,1903736026,
%U A292524 5711208079,17133624236,51400872708,154202618124,462607854373,1387823563119,4163470689357
%N A292524 Interpret the values of the Moebius function mu(k) for k = 1 to n as a balanced ternary number.
%C A292524 Balanced ternary is much like regular ternary, but with the crucial difference of using the digit -1 instead of the digit 2. Then some powers of 3 are added, others are subtracted.
%C A292524 If mu(n) = 0, then a(n) is a multiple of 3, specifically, it is thrice a(n - 1). Otherwise, a(n) is not a multiple of 3.
%H A292524 Alois P. Heinz, Table of n, a(n) for n = 0..2097
%H A292524 Wikipedia, Balanced ternary
%F A292524 a(n) = Sum_{k = 1..n} mu(k) 3^(n - k).
%F A292524 a(n) = 3 * a(n-1) + mu(n) for n > 0. - _Alois P. Heinz_, Oct 13 2017
%F A292524 a(n) ~ A238271 * 3^n. - _Vaclav Kotesovec_, May 19 2021
%e A292524 mu(1) = 1, so a(1) = 1 * 3^0 = 1.
%e A292524 mu(2) = -1, so a(2) = 1 * 3^1 + -1 * 3^0 = 3 - 1 = 2.
%e A292524 mu(3) = -1, so a(3) = 1 * 3^2 + -1 * 3^1 + -1 * 3^0 = 9 - 3 - 1 = 5.
%e A292524 mu(4) = 0, so a(4) = 1 * 3^3 + -1 * 3^2 + -1 * 3^1 + 0 * 3^0 = 27 - 9 - 3 + 0 = 15.
%p A292524 a:= proc(n) option remember; `if`(n=0, 0,
%p A292524 a(n-1)*3+numtheory[mobius](n))
%p A292524 end:
%p A292524 seq(a(n), n=0..33); # _Alois P. Heinz_, Oct 13 2017
%t A292524 Table[Plus@@(3^Range[n - 1, 0, -1] MoebiusMu[Range[n]]), {n, 50}]
%o A292524 (PARI) a(n) = sum(k=1, n, moebius(k)*3^(n-k)); \\ _Michel Marcus_, Oct 01 2017
%o A292524 (PARI) my(N=40, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, moebius(k)*x^k)/(1-3*x))) \\ _Seiichi Manyama_, May 19 2021
%o A292524 (PARI) a(n) = if(n==0, 0, 3*a(n-1)+moebius(n)); \\ _Seiichi Manyama_, May 19 2021
%Y A292524 Cf. A008683, A238271, A292779, A344432, A344433.
%K A292524 nonn,easy,base
%O A292524 0,3
%A A292524 _Alonso del Arte_, Sep 18 2017
%E A292524 a(0)=0 prepended by _Alois P. Heinz_, Oct 13 2017
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE