# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a292068 Showing 1-1 of 1 %I A292068 #32 Nov 20 2019 02:26:13 %S A292068 1,1,-1,1,-1,0,1,-1,-1,-1,1,-1,-3,-2,1,1,-1,-7,-6,2,-1,1,-1,-15,-20,6, %T A292068 -1,1,1,-1,-31,-66,20,5,4,-1,1,-1,-63,-212,66,71,40,-1,2,1,-1,-127, %U A292068 -666,212,605,442,11,18,-2,1,-1,-255,-2060,666,4439,4660,215,226,-22,2 %N A292068 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 + j^k*x^j). %e A292068 Square array begins: %e A292068 1, 1, 1, 1, 1, ... %e A292068 -1, -1, -1, -1, -1, ... %e A292068 0, -1, -3, -7, -15, ... %e A292068 -1, -2, -6, -20, -66, ... %e A292068 1, 2, 6, 20, 66, ... %p A292068 b:= proc(n, i, k) option remember; (m-> %p A292068 `if`(mn, 0, i^k*b(n-i, i-1, k)))))(i*(i+1)/2) %p A292068 end: %p A292068 A:= proc(n, k) option remember; `if`(n=0, 1, %p A292068 -add(b(n-i$2, k)*A(i, k), i=0..n-1)) %p A292068 end: %p A292068 seq(seq(A(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Sep 12 2017 %t A292068 b[n_, i_, k_] := b[n, i, k] = If[# < n, 0, If[n == #, i!^k, b[n, i-1, k] + If[i > n, 0, i^k b[n-i, i-1, k]]]]&[i(i+1)/2]; %t A292068 A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[b[n-i, n-i, k] A[i, k], {i, 0, n-1}]]; %t A292068 Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Nov 20 2019, after _Alois P. Heinz_ *) %o A292068 (Python) %o A292068 from sympy.core.cache import cacheit %o A292068 from sympy import factorial as f %o A292068 @cacheit %o A292068 def b(n, i, k): %o A292068 m=i*(i + 1)/2 %o A292068 return 0 if mn else i**k*b(n - i, i - 1, k)) %o A292068 @cacheit %o A292068 def A(n, k): return 1 if n==0 else -sum([b(n - i, n - i, k)*A(i, k) for i in range(n)]) %o A292068 for d in range(13): print([A(n, d - n) for n in range(d + 1)]) # _Indranil Ghosh_, Sep 14 2017, after Maple program %Y A292068 Columns k=0..2 give A081362, A022693, A292165. %Y A292068 Rows n=0..2 give A000012, (-1)*A000012, (-1)*A000225. %Y A292068 Main diagonal gives A292072. %Y A292068 Cf. A292189, A292193. %K A292068 sign,tabl %O A292068 0,13 %A A292068 _Seiichi Manyama_, Sep 12 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE