# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a290479 Showing 1-1 of 1 %I A290479 #7 Aug 06 2018 22:39:47 %S A290479 1,1,1,1,1,6,1,1,1,10,1,6,1,14,15,1,1,6,1,10,21,22,1,6,1,26,1,14,1, %T A290479 27000,1,1,33,34,35,6,1,38,39,10,1,74088,1,22,15,46,1,6,1,10,51,26,1, %U A290479 6,55,14,57,58,1,27000,1,62,21,1,65,287496,1,34,69,343000,1,6,1,74,15,38,77,474552,1,10 %N A290479 Product of nonprime squarefree divisors of n. %H A290479 Antti Karttunen, Table of n, a(n) for n = 1..65537 %F A290479 a(n) = A078599(n)/A007947(n). %F A290479 a(n) = rad(n)^(d(rad(n))/2-1), where d() is the number of divisors of n (A000005) and rad() is the squarefree kernel of n (A007947). %F A290479 a(n) = 1 if n is a prime power. %e A290479 a(30) = 27000 because 30 has 8 divisors {1, 2, 3, 5, 6, 10, 15, 30} among which 5 are nonprime squarefree {1, 6, 10, 15, 30} and 1*6*10*15*30 = 27000. %t A290479 Table[Product[d, {d, Select[Divisors[n], !PrimeQ[#] && SquareFreeQ[#] &]}], {n, 80}] %t A290479 Table[Last[Select[Divisors[n], SquareFreeQ]]^(DivisorSigma[0, Last[Select[Divisors[n], SquareFreeQ]]]/2 - 1), {n, 80}] %o A290479 (PARI) A290479(n) = if(1==n, n, my(r=factorback(factorint(n)[, 1])); (r^((numdiv(r)/2)-1))); \\ _Antti Karttunen_, Aug 06 2018 %Y A290479 Cf. A000005, A000469, A006881 (fixed points), A007947, A007955, A007956, A061537, A062758, A078599, A087652, A126192, A136655, A183091, A284118. %K A290479 nonn %O A290479 1,6 %A A290479 _Ilya Gutkovskiy_, Aug 03 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE