# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a289787 Showing 1-1 of 1 %I A289787 #19 Aug 19 2017 13:30:56 %S A289787 2,12,62,312,1570,7908,39838,200688,1010978,5092860,25655582, %T A289787 129241512,651061762,3279762132,16521995710,83230530528,419278719938, %U A289787 2112141348588,10640036959358,53599815453720,270012240337762,1360202629711812,6852101192007262 %N A289787 p-INVERT of the even positive integers (A005843), where p(S) = 1 - S - S^2. %C A289787 Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453). %C A289787 See A289780 for a guide to related sequences. %H A289787 Clark Kimberling, Table of n, a(n) for n = 0..1000 %H A289787 Index entries for linear recurrences with constant coefficients, signature (6, -6, 6, -1) %F A289787 G.f.: (2 (1 + x^2))/(1 - 6 x + 6 x^2 - 6 x^3 + x^4). %F A289787 a(n) = 6*a(n-1) - 6*a(n-2) + 6*a(n-3) - a(n-4). %t A289787 z = 60; s = 2*x/(1 - x)^2; p = 1 - s - s^2; %t A289787 Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005843 *) %t A289787 u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289787 *) %t A289787 u/2 (* A289788 *) %Y A289787 Cf. A005843, A289780, A289788. %K A289787 nonn,easy %O A289787 0,1 %A A289787 _Clark Kimberling_, Aug 10 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE