# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a286893 Showing 1-1 of 1 %I A286893 #25 Apr 29 2019 05:41:59 %S A286893 1,1,6,1,21,351,1,126,12096,2544696,1,666,420876,544638816, %T A286893 705278736576,1,3996,15132096,117564302016,914040184444416, %U A286893 7107572245840091136,1,23436,544230576,25390538401536,1184595336212990976,55268479955808421134336,2578606199622710056510488576 %N A286893 Triangle read by rows: T(n,m) is the number of pattern classes in the (n,m)-rectangular grid with 6 colors and n>=m, two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other. %C A286893 Computed using Burnside's orbit-counting lemma. %H A286893 María Merino, Rows n=0..36 of triangle, flattened %H A286893 M. Merino and I. Unanue, Counting squared grid patterns with Pólya Theory, EKAIA, 34 (2018), 289-316 (in Basque). %F A286893 For even n and m: T(n,m) = (6^(m*n) + 3*6^(m*n/2))/4; %F A286893 for even n and odd m: T(n,m) = (6^(m*n) + 6^((m*n+n)/2) + 2*6^(m*n/2))/4; %F A286893 for odd n and even m: T(n,m) = (6^(m*n) + 6^((m*n+m)/2) + 2*6^(m*n/2))/4; %F A286893 for odd n and m: T(n,m) = (6^(m*n) + 6^((m*n+n)/2) + 6^((m*n+m)/2) + 6^((m*n+1)/2))/4. %e A286893 Triangle begins: %e A286893 ============================================================================ %e A286893 n\m | 0 1 2 3 4 5 %e A286893 ----|----------------------------------------------------------------------- %e A286893 0 | 1 %e A286893 1 | 1 6 %e A286893 2 | 1 21 351 %e A286893 3 | 1 126 12096 2544696 %e A286893 4 | 1 666 420876 544638816 705278736576 %e A286893 5 | 1 3996 15132096 117564302016 914040184444416 7107572245840091136 %e A286893 ... %Y A286893 Cf. A225910, A283432, A283433, A283434. %K A286893 nonn,tabl %O A286893 0,3 %A A286893 _María Merino_, Imanol Unanue, _Yosu Yurramendi_, May 15 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE