# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a286377 Showing 1-1 of 1 %I A286377 #12 May 09 2017 17:37:53 %S A286377 1,2,2,60,2,2520,60,138600,2,87318000,2520,189189000,60, %T A286377 792148896000000,138600,70756686000,2,2288271225240000,87318000, %U A286377 944154902157667200000000,2520,20388496616888400000000,189189000,127170673342713000000,60,701323506627727183200000000,792148896000000,21149759041410320377056000000000000000,138600 %N A286377 a(n) = A278243(n^2). %C A286377 Observation: the restricted growth sequence computed for this sequence seems to give A103391 (apart from the fact that the latter uses starting offset 1 instead of 0. Checked up to n=2048). If this holds, then A103391 works as a more practical filtering sequence (than this sequence, with its huge terms) matching for example to sequences like A286387. Compare also to A286378. %H A286377 Antti Karttunen, Table of n, a(n) for n = 0..256 %H A286377 Index entries for sequences related to Stern's sequences %F A286377 a(n) = A278243(A000290(n)) = A278243(n^2). %o A286377 (PARI) %o A286377 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from _Charles R Greathouse IV_, Aug 17 2011 %o A286377 A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ This function from _Michel Marcus_ %o A286377 A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); %o A286377 A278243(n) = A046523(A260443(n)); %o A286377 A286377(n) = A278243(n*n); %o A286377 for(n=0, 256, write("b286377.txt", n, " ", A286377(n))); %o A286377 (Scheme) (define (A286377 n) (A278243 (* n n))) %Y A286377 Cf. A000290, A103391, A278243, A286374, A286378, A286387. %K A286377 nonn %O A286377 0,2 %A A286377 _Antti Karttunen_, May 09 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE