# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a282757 Showing 1-1 of 1 %I A282757 #8 Feb 23 2017 22:53:51 %S A282757 5,9,10,15,19,20,25,28,30,35,40,45,47,66,88,132,198,2006,2740,4012, %T A282757 4419,13635,56357,338540,354164,419966,441972,685704,803678,1528803, %U A282757 1844810,9127005,12305952,14315686,14650155,15828353,17838087,22618003,37826729,71644613 %N A282757 2*n analog to Keith numbers. %C A282757 Like Keith numbers but starting from 2*n digits to reach n. %C A282757 Consider the digits of 2*n. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves. %e A282757 2*28 = 56 : %e A282757 5 + 6 = 11; %e A282757 6 + 11 = 17; %e A282757 11 + 17 = 28. %p A282757 with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h); %p A282757 for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then %p A282757 for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]