# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a281821 Showing 1-1 of 1 %I A281821 #17 Feb 03 2017 03:46:24 %S A281821 16,3456,432000,1185408000,32006016000,42600007296000, %T A281821 93592216029312000,5989901825875968,735709691763215769600, %U A281821 25231163879019484818432000,25231163879019484818432000,306987570916030071785862144000 %N A281821 Denominator of Sum_{k=1..n} (30k-11)/(4*(2k-1)*k^3*binomial(2k,k)^2). %C A281821 In 1990, Gosper gave the following combinatorial identity: zeta(3) = Sum_{k>=1} (30k-11)/(4*(2k-1)*k^3*binomial(2k,k)^2). %D A281821 Lloyd James Peter Kilford, Modular Forms: A Classical and Computational Introduction, World Scientific, 2008 page 188. %H A281821 Seiichi Manyama, Table of n, a(n) for n = 1..384 %H A281821 Eric Weisstein's World of Mathematics, Apery's Constant %e A281821 19/16, 4153/3456, 519283/432000, 1424927267/1185408000, ... %t A281821 Table[Denominator@ Sum[(30 k - 11)/(4 (2 k - 1)*k^3*Binomial[2 k, k]^2), {k, n}], {n, 12}] (* _Michael De Vlieger_, Feb 02 2017 *) %Y A281821 Cf. A002117, A281820. %K A281821 nonn,frac %O A281821 1,1 %A A281821 _Seiichi Manyama_, Jan 31 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE