# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a281444 Showing 1-1 of 1 %I A281444 #5 May 21 2017 07:49:30 %S A281444 1,1,33,3393,715329,255419649,138324673377,105723078203457, %T A281444 108400924932329601,143589514674637260801,238670525628280806487713, %U A281444 486411018516606613409744193,1192731112687557517714202303169,3464267964203640308372312350830849,11761665286319167564660531957187772897,46153563625764407361666349419808431496257,207288280492672493893642973836751374267592961 %N A281444 E.g.f. C(x) satisfies: C(x) = cosh( Integral C(x)^8 dx ). %F A281444 C(x)^2 - S(x)^2 = 1 and C(x) = 1 + Integral C(x)^8*S(x) dx, where S(x) is described by A281439. %o A281444 (PARI) {a(n) = my(S=x, C=1); for(i=0, n, S = intformal( C^9 +x*O(x^(2*n))); C = 1 + intformal( S*C^8 ) ); (2*n)!*polcoeff(C, 2*n)} %o A281444 for(n=0, 30, print1(a(n), ", ")) %K A281444 nonn %O A281444 0,3 %A A281444 _Paul D. Hanna_, Jan 21 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE