# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a276593 Showing 1-1 of 1 %I A276593 #39 Apr 02 2023 00:42:43 %S A276593 8,96,960,161280,2903040,638668800,49816166400,83691159552000, %T A276593 2845499424768000,1946321606541312000,408727537373675520000, %U A276593 48662619743783485440000,124089680346647887872000000,174221911206693634572288000000,70734095949917615636348928000000 %N A276593 Denominator of the rational part of the sum of reciprocals of even powers of odd numbers, i.e., Sum_{k>=1} 1/(2*k-1)^(2*n). %C A276593 A276592(n)/a(n) * Pi^(2*n) = Sum_{k>=1} 1/(2*k-1)^(2*n) > 1. So Pi^(2*n) > a(n)/A276592(n). - _Seiichi Manyama_, Sep 03 2018 %H A276593 Seiichi Manyama, Table of n, a(n) for n = 1..225 %F A276593 A276592(n)/a(n) + A276594(n)/A276595(n) = A046988(n)/A002432(n). %F A276593 A276592(n)/a(n) = (-1)^(n+1) * B_{2*n} * (2^(2*n) - 1) / (2 * (2*n)!), where B_n is the Bernoulli number. - _Seiichi Manyama_, Sep 03 2018 %e A276593 From _Seiichi Manyama_, Sep 03 2018: (Start) %e A276593 n | Pi^(2*n) | a(n)/A276592(n) %e A276593 --+---------------+------------------------------------ %e A276593 1 | 9.8... | 8 %e A276593 2 | 97.4... | 96 %e A276593 3 | 961.3... | 960 %e A276593 4 | 9488.5... | 161280/17 = 9487.0... %e A276593 5 | 93648.0... | 2903040/31 = 93646.4... %e A276593 6 | 924269.1... | 638668800/691 = 924267.4... %e A276593 7 | 9122171.1... | 49816166400/5461 = 9122169.2... (End) %p A276593 seq(denom(sum(1/(2*k-1)^(2*n),k=1..infinity)/Pi^(2*n)),n=1..22); %t A276593 a[n_]:=Denominator[(1-2^(-2 n)) Zeta[2 n]] (* _Steven Foster Clark_, Mar 10 2023 *) %t A276593 a[n_]:=Denominator[1/2 SeriesCoefficient[1/(E^x+1),{x,0,2 n-1}]] (* _Steven Foster Clark_, Mar 10 2023 *) %t A276593 a[n_]:=Denominator[1/2 Residue[Zeta[s] Gamma[s] (1-2^(1-s)) x^(-s),{s,1-2 n}]] (* _Steven Foster Clark_, Mar 11 2023 *) %Y A276593 Cf. A002432, A046988, A276592, A276594, A276595. %K A276593 nonn,frac %O A276593 1,1 %A A276593 _Martin Renner_, Sep 07 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE