# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a273691 Showing 1-1 of 1 %I A273691 #5 May 28 2016 07:29:54 %S A273691 12,60,108,120,120,168,192,192,234,240,300,360,360,420,420,420,420, %T A273691 420,420,432,540,540,588,600,660,660,714,768,840,924,960,960,966,1008, %U A273691 1008,1008,1080,1080,1080,1092,1134,1200 %N A273691 Integer area of primitive cyclic quadrilaterals with integer sides and rational radius. %C A273691 Given 4 segments a,b,c,d, there is a unique circumcircle such that these segments can be placed inside to form cyclic quadrilaterals. There are 3 ways to place these segments: abcd,acbd,adbc. %C A273691 Primitive means a,b,c,d share no common factor. %C A273691 The area S = sqrt[(s-a)(s-b)(s-c)(s-d)] where s=(a+b+c+d)/2 is the semiperimeter. %C A273691 The circumradius R=Sqrt[a b+c d]*Sqrt[a c+b d]*Sqrt[a d+b c]/(4S) %C A273691 The length of the diagonal separating a-b and c-d is (4S R)/(a b+c d), the other diagonal can be obtain by swapping b,c or swapping b,d. %C A273691 It follows that if the sides and area are integers, then (any diagonal is rational) <=> (circumradius is rational) <=> (all diagonals are rational). %C A273691 From empirical observation, the area seems to be a multiple of 6. (If so, the program could be modified to run 6 times as fast.) %e A273691 a, b, c, d, S, r %e A273691 4, 4, 3, 3, 12, 5/2 %e A273691 12, 12, 5, 5, 60, 13/2 %e A273691 14, 13, 13, 4, 108, 65/8 %e A273691 15, 15, 8, 8, 120, 17/2 %e A273691 21, 10, 10, 9, 120, 85/8 %e A273691 24, 24, 7, 7, 168, 25/2 %e A273691 21, 13, 13, 11, 192, 65/6 %e A273691 25, 15, 15, 7, 192, 25/2 %e A273691 24, 20, 15, 7, 234, 25/2 %t A273691 SMax=1200; %t A273691 Do[ %t A273691 x=S^2/(u v w); %t A273691 If[u+v+w+x//OddQ,Continue[]]; %t A273691 If[v+w+x<=u,Continue[]]; %t A273691 {a,b,c,d}=(u+v+w+x)/2-{x,w,v,u}; %t A273691 If[GCD[a,b,c,d]>1,Continue[]]; %t A273691 R=(Sqrt[v w+u x]Sqrt[u w+v x]Sqrt[u v+w x])/(4S); %t A273691 If[R\[NotElement]Rationals,Continue[]]; %t A273691 S(*{a,b,c,d,"",S,R,"",(4S R)/(a d+b c),(4S R)/(a c+b d),(4S R)/(a b+c d)}*)//Sow; %t A273691 ,{S,1(*6*),SMax,1(*6*)}(*assuming S mod 6 = 0, set to 6 to run faster*) %t A273691 ,{u,S^2//Divisors//Select[#,S<=#^2&&#<=S&]&} %t A273691 ,{v,S^2/u//Divisors//Select[#,S^2<=u#^3&&u/3<#<=u&]&} %t A273691 ,{w,S^2/(u v)//Divisors//Select[#,S^2<=u v#^2&&(u-v)/2<#<=v&]&} %t A273691 ]//Reap//Last//Last(*//TableForm*) %t A273691 {S,R,x,a,b,c,d}=.; %K A273691 nonn %O A273691 1,1 %A A273691 _Albert Lau_, May 28 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE