# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a266817 Showing 1-1 of 1 %I A266817 #25 May 16 2019 08:53:34 %S A266817 25,59,102,104,250,590,1306,1976,2500,3763,12998,13060,19760,21912, %T A266817 25000,53216,71457,73365,137083,143507,214651,250000,348611,609185, %U A266817 732021,2500000,3323935,3486110,7848843,12122159,19977668,25000000,59725459,117927427,128226908 %N A266817 Numbers x = concat(a,b) such that b^a begins with the digits of x. %C A266817 Any numbers of the form 25*10^k, with k>=0, are part of the sequence. %e A266817 25: 5^2 = 25; %e A266817 59: 9^5 = 59049 that begins with 59; %e A266817 102: 2^10 = 1024 that begins with 102; %e A266817 1306: 6^13 = 13060694016 that begins with 1306; %e A266817 3763: 63^37 = 3763572874813444727106020660762327844147969869582735798064027429183 that begins with 3763. %p A266817 with(numtheory): P:= proc(q) local a,b,c,d,k,n; %p A266817 for n from 1 to q do d:=ilog10(n); for k from 1 to d do a:=(n mod 10^k)^trunc(n/10^k); b:=ilog10(a)+1; %p A266817 if trunc(a/10^(b-d-1))=n then print(n); break; fi; od; od; end: P(10^6); %t A266817 Select[Range[10^5], AnyTrue[Function[n, FromDigits@ If[Length@ # < IntegerLength@ n, #, Take[#, IntegerLength@ n]] &@ IntegerDigits[#2^#1] & @@@ Map[Function[k, Map[FromDigits, TakeDrop[#, k]]], Range[Length@ # - 1]] &@ IntegerDigits@ n]@ #, Function[m, m == #]] &] (* _Michael De Vlieger_, Jan 12 2016, Version 10.2 *) %Y A266817 Cf. A273382, A266818, A273383. %K A266817 nonn,base %O A266817 1,1 %A A266817 _Paolo P. Lava_, Jan 04 2016 %E A266817 a(19)-a(25) from _Michael De Vlieger_, Jan 12 2016 %E A266817 a(26) from _Lars Blomberg_, Feb 08 2016 %E A266817 Name corrected by and a(27)-a(35) from _Giovanni Resta_, Jun 06 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE