# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a260533 Showing 1-1 of 1 %I A260533 #37 Aug 27 2024 16:46:03 %S A260533 1,1,1,1,2,1,1,3,1,2,1,1,4,3,3,2,2,1,1,5,6,4,1,6,3,1,2,2,1,1,6,10,5,4, %T A260533 12,4,3,3,6,3,2,2,2,1,1,7,15,6,10,20,5,1,12,6,12,4,3,3,6,6,3,1,2,2,2,1 %N A260533 Table of partition coefficients read by rows. The coefficient of a partition p is Product_{j=1..length(p)-1} C(p[j], p[j+1]). Row n lists the coefficients of the partitions of n in the ordering A080577, for n>=1. %C A260533 The triangle is a refinement of Pascal's triangle A007318. %H A260533 Johann Cigler, Some elementary remarks on the powers of a partial theta function and corresponding q-analogs of the binomial coefficients, arXiv:2408.14094 [math.NT], 2024. %H A260533 Peter Luschny, The P-transform, 2016. %H A260533 Peter Luschny, The Partition Transform, A SageMath Jupyter Notebook, GitHub, 2016/2022. %H A260533 Marko Riedel, Answer to Question 4943578, Mathematics Stack Exchange, 2024. %H A260533 Peter Taylor, Answer to Question 474483, MathOverflow, 2024. %F A260533 Let P = Partitions(n, k) denote the set of partitions p of n with largest part k. Then Sum_{p in P} PartitionCoefficient(p) = binomial(n-1,k-1) for n>=0 and k>=0 (assuming binomial(-1,-1) = 1). %e A260533 The signed version of the triangle starts: %e A260533 [1] %e A260533 [-1, 1] %e A260533 [1, -2, 1] %e A260533 [-1, 3, -1, -2, 1] %e A260533 [1, -4, 3, 3, -2, -2, 1] %e A260533 [-1, 5, -6, -4, 1, 6, 3, -1, -2, -2, 1] %e A260533 Adding adjacent coefficients with equal sign reduces the triangle to the matrix inverse of Pascal's triangle (A130595). %e A260533 . %e A260533 The q-polynomials defined by Cigler start: %e A260533 [0] 1; %e A260533 [1] 1, q; %e A260533 [2] 1, 2*q, q^3; %e A260533 [3] 1, 3*q, q^2+2*q^3, q^6; %e A260533 [4] 1, 4*q, 3*q^2+3*q^3, 2*q^4+2*q^6, q^10; %e A260533 [5] 1, 5*q, 6*q^2+4*q^3, q^3+6*q^4+3*q^6, q^6+2*q^7+2*q^10, q^15; %p A260533 with(combstruct): with(ListTools): %p A260533 PartitionCoefficients := proc(n) local L, iter, p; %p A260533 iter := iterstructs(Partition(n)): L := []: %p A260533 while not finished(iter) do %p A260533 p := Reverse(nextstruct(iter)): %p A260533 L := [mul(binomial(p[j], p[j+1]), j=1..nops(p)-1), op(L)] %p A260533 od end: %p A260533 for n from 1 to 6 do PartitionCoefficients(n) od; %p A260533 # Alternative, using Cigler's recurrence for the q-polynomials: %p A260533 C := proc(n, k, q) local j; %p A260533 if k = 0 then q^binomial(n + 1, 2) elif n = 0 then n^k else %p A260533 add(q^binomial(j + 1, 2)*C(n - j - 1, k - 1, q), j = 0..n - k) fi end: %p A260533 p := n -> local k; add(C(n, n - k, q)*x^k, k = 0..n): %p A260533 row := n -> local k; seq(sort(coeff(expand(p(n)), x, k), [q], ascending), k=0..n): %p A260533 for n from 0 to 5 do row(n) od; # _Peter Luschny_, Aug 24 2024 %o A260533 (Sage) %o A260533 PartitionCoeff = lambda p: mul(binomial(p[j], p[j+1]) for j in range(len(p)-1)) %o A260533 PartitionCoefficients = lambda n: [PartitionCoeff(p) for p in Partitions(n)] %o A260533 for n in (1..7): print(PartitionCoefficients(n)) %Y A260533 Cf. A007318, A080577, A130595, A269941 (expanded form). %K A260533 nonn,tabf %O A260533 1,5 %A A260533 _Peter Luschny_, Jul 28 2015 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE