# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a249667 Showing 1-1 of 1 %I A249667 #25 Mar 09 2016 16:37:57 %S A249667 6,24,30,36,50,54,78,84,114,132,144,156,174,210,220,252,294,300,306, %T A249667 330,360,378,474,492,510,512,528,546,560,594,610,650,660,690,714,720, %U A249667 762,780,800,804,810,816,870,912,996,1002,1068,1074,1104,1120,1170,1176,1190,1210,1236,1262 %N A249667 Numbers n such that the sum of n and the largest primen is also prime. %C A249667 This sequence is the intersection of A249624 and A249666. %H A249667 Chai Wah Wu, Table of n, a(n) for n = 1..3410 %e A249667 114 is in the sequence because the least prime>114 is 127 and 114+127=241 is prime; the largest prime<114 is 113 and 114+113=227 is prime. Also, 114 is in A249624 and A249666. %t A249667 Select[Range[1500],AllTrue[#+{NextPrime[#],NextPrime[#,-1]},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Mar 09 2016 *) %o A249667 (PARI) {for(i=3,2*10^3,k=i+nextprime(i+1);q=i+precprime(i-1);if(isprime(k)&&isprime(q),print1(i,", ")))} %o A249667 (Python) %o A249667 from gmpy2 import is_prime, next_prime %o A249667 A249667_list, p = [], 2 %o A249667 for _ in range(10**4): %o A249667 ....q = next_prime(p) %o A249667 ....n1 = 2*p+1 %o A249667 ....n2 = p+q+1 %o A249667 ....while n1 < p+q: %o A249667 ........if is_prime(n1) and is_prime(n2): %o A249667 ............A249667_list.append(n1-p) %o A249667 ........n1 += 2 %o A249667 ........n2 += 2 %o A249667 ....p = q # _Chai Wah Wu_, Dec 06 2014 %Y A249667 Cf. A249624, A249666, A249676. %K A249667 nonn %O A249667 1,1 %A A249667 _Antonio Roldán_, Dec 03 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE