# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a244925 Showing 1-1 of 1 %I A244925 #16 Jun 01 2021 15:43:07 %S A244925 1,0,1,0,1,1,0,1,1,1,0,1,2,1,1,0,1,2,2,1,1,0,1,4,3,2,1,1,0,1,4,5,3,2, %T A244925 1,1,0,1,7,7,6,3,2,1,1,0,1,8,12,8,6,3,2,1,1,0,1,12,18,15,9,6,3,2,1,1, %U A244925 0,1,14,27,23,16,9,6,3,2,1,1,0,1,21,42,39,26,17,9,6,3,2,1,1 %N A244925 Number T(n,k) of n-node unlabeled rooted trees with every leaf at height k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows. %H A244925 Alois P. Heinz, Rows n = 1..141, flattened %e A244925 The A048816(5) = 5 rooted trees with 5 nodes with every leaf at the same height sorted by height are: %e A244925 : o : o o : o : o : %e A244925 : /( )\ : / \ | : | : | : %e A244925 : o o o o : o o o : o : o : %e A244925 : : | | /|\ : | : | : %e A244925 : : o o o o o : o : o : %e A244925 : : : / \ : | : %e A244925 : : : o o : o : %e A244925 : : : : | : %e A244925 : : : : o : %e A244925 : : : : : %e A244925 : ---1--- : -----2----- : --3-- : -4- : %e A244925 Thus row 5 = [0, 1, 2, 1, 1]. %e A244925 Triangle T(n,k) begins: %e A244925 1; %e A244925 0, 1; %e A244925 0, 1, 1; %e A244925 0, 1, 1, 1; %e A244925 0, 1, 2, 1, 1; %e A244925 0, 1, 2, 2, 1, 1; %e A244925 0, 1, 4, 3, 2, 1, 1; %e A244925 0, 1, 4, 5, 3, 2, 1, 1; %e A244925 0, 1, 7, 7, 6, 3, 2, 1, 1; %e A244925 0, 1, 8, 12, 8, 6, 3, 2, 1, 1; %e A244925 0, 1, 12, 18, 15, 9, 6, 3, 2, 1, 1; %e A244925 0, 1, 14, 27, 23, 16, 9, 6, 3, 2, 1, 1; %e A244925 ... %p A244925 with(numtheory): %p A244925 T:= proc(n, k) option remember; `if`(n=1, 1, `if`(k=0, 0, %p A244925 add(add(`if`(d0), A002865(n-1) (for n>2), A048808, A048809, A048810, A048811, A048812, A048813, A048814, A048815. %Y A244925 T(2n+1,n) gives A074045. %Y A244925 Row sums give A048816. %K A244925 nonn,tabl %O A244925 1,13 %A A244925 _Alois P. Heinz_, Jul 08 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE