# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a242087 Showing 1-1 of 1 %I A242087 #13 May 23 2014 13:53:48 %S A242087 1,0,6,6,36,88,376,1096,4476,14200,57284,190206,764812,2615268, %T A242087 10499504,36677626,147110276,522288944 %N A242087 Number of balanced orbitals over an odd number of sectors. %C A242087 See A241810 and A232500 for the combinatorial definitions. %F A242087 a(n) = A241810(2*n+1). %t A242087 np[z_]:=Module[{i,j},For[i=Length[z],i>1&&z[[i-1]]>=z[[i]],i--]; For[j=Length[z],z[[j]]<=z[[i-1]],j--]; Join[Take[z,i-2],{z[[j]]}, Reverse[Drop[ReplacePart[z,z[[i-1]],j],i-1]]]]; o=Table[1,{16}]; %t A242087 Print[1]; Do[p=Join[-Take[o,n],{0},Take[o,n]]; c=0; Do[If[Accumulate[Accumulate[p]][[-1]]==0,c++]; p=np[p],{(2*n+1)!/(2*n!^2)}]; Print[2*c],{n,16}] %t A242087 (* _Hans Havermann_, May 10 2014 *) %o A242087 (Sage) %o A242087 def A242087(n): %o A242087 if n == 0: return 1 %o A242087 A = 0; T = [0] %o A242087 for i in (1..n): %o A242087 T.append(-1); T.append(1) %o A242087 for p in Permutations(T): %o A242087 P = 0; S = 0 %o A242087 for k in (0..2*n): %o A242087 P += p[k]; S += P %o A242087 if S == 0: A += 1 %o A242087 return A %o A242087 [A242087(n) for n in (0..10)] %K A242087 nonn,more %O A242087 0,3 %A A242087 _Peter Luschny_, May 04 2014 %E A242087 More terms from _Hans Havermann_, May 10 2014 %E A242087 a(17) from _Hans Havermann_, May 23 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE