# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a241340 Showing 1-1 of 1 %I A241340 #7 Apr 26 2014 21:08:52 %S A241340 0,1,2,3,4,5,7,8,11,15,18,22,37,36,50,73,89,100,152,161,249,290,330, %T A241340 413,646,666,803,1060,1348,1473,2170,2183,3003,3455,3984,5318,6936, %U A241340 6839,8494,10664,14064,14322,19343,20418,26417,32021,34068,40921,56205,57543 %N A241340 Number of partitions p of n such that floor(mean(p)) and ceiling(mean(p)) are parts of p. %F A241340 a(n) + A241344(n) = A000041(n) for n >=1. %e A241340 a(6) counts these 8 partitions: 6, 33, 321, 3111, 222, 2211, 21111, 111111. %t A241340 z = 30; f[n_] := f[n] = IntegerPartitions[n]; %t A241340 t1 = Table[Count[f[n], p_ /; MemberQ[p, Floor[Mean[p]]] && MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241340 *) %t A241340 t2 = Table[Count[f[n], p_ /; ! MemberQ[p, Floor[Mean[p]]] && MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241341 *) %t A241340 t3 = Table[Count[f[n], p_ /; MemberQ[p, Floor[Mean[p]]] && ! MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241342 *) %t A241340 t4 = Table[Count[f[n], p_ /; ! MemberQ[p, Floor[Mean[p]]] && ! MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241343 *) %t A241340 t5 = Table[Count[f[n], p_ /; MemberQ[p, Floor[Mean[p]]] || MemberQ[p, Ceiling[Mean[p]]]], {n, 0, z}] (* A241344 *) %Y A241340 Cf. A241341, A241342, A241343, A241344. %K A241340 nonn,easy %O A241340 0,3 %A A241340 _Clark Kimberling_, Apr 20 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE