# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a241085 Showing 1-1 of 1 %I A241085 #7 Apr 24 2014 10:28:53 %S A241085 0,1,0,1,1,1,1,1,2,2,3,2,3,3,4,5,6,6,7,8,8,10,11,13,14,17,18,21,22,25, %T A241085 27,31,33,38,42,47,52,57,63,69,76,82,91,99,109,119,132,142,158,171, %U A241085 188,203,223,240,263,284,309,334,364,393,428,463,501,543,588 %N A241085 Number of partitions p of n into distinct parts such that max(p) < 2*(number of parts of p). %e A241085 a(15) counts these 5 partitions: 7521, 7431, 6531, 6432, 54321. %t A241085 z = 40; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; %t A241085 Table[Count[f[n], p_ /; Max[p] < 2*Length[p]], {n, 0, z}] (* A241085 *) %t A241085 Table[Count[f[n], p_ /; Max[p] <= 2*Length[p]], {n, 0, z}] (* A241086 *) %t A241085 Table[Count[f[n], p_ /; Max[p] == 2*Length[p]], {n, 0, z}] (* A241087 *) %t A241085 Table[Count[f[n], p_ /; Max[p] >= 2*Length[p]], {n, 0, z}] (* A241088 *) %t A241085 Table[Count[f[n], p_ /; Max[p] > 2*Length[p]], {n, 0, z}] (* A241089 *) %Y A241085 Cf. A241086, A241087, A241088, A241089. %K A241085 nonn,easy %O A241085 0,9 %A A241085 _Clark Kimberling_, Apr 17 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE