# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a240862 Showing 1-1 of 1 %I A240862 #11 Jul 26 2024 06:40:32 %S A240862 0,0,0,1,0,1,2,2,3,3,5,5,7,7,10,12,14,16,19,23,27,33,37,45,51,60,68, %T A240862 82,94,108,123,143,165,188,214,246,282,318,362,412,469,527,597,675, %U A240862 764,858,965,1086,1223,1367,1530,1717,1923,2144,2393,2674,2981,3315 %N A240862 Number of partitions of n into distinct parts of which the number of even parts is a part. %F A240862 a(n) + A240869(n) = A000009(n) for n >= 0. %e A240862 a(10) counts these 5 partitions: 82, 721, 631, 541, 4321. %t A240862 z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &]; %t A240862 t1 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]]], {n, 0, z}] (* A240862 *) %t A240862 t2 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240863, *) %t A240862 t3 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240864 *) %t A240862 t4 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] || MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240865 *) %t A240862 t5 = Table[Count[f[n], p_ /; MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240866 *) %t A240862 t6 = Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240867 *) %t A240862 t7 = Table[Count[f[n], p_ /; ! MemberQ[p, Count[Mod[p, 2], 0]] && ! MemberQ[p, Count[Mod[p, 2], 1]]], {n, 0, z}] (* A240868 *) %Y A240862 Cf. A240863, A240864, A240865, A240866, A240867, A240868; for analogous sequences for unrestricted partitions, see A240573-A240579. %K A240862 nonn,easy %O A240862 0,7 %A A240862 _Clark Kimberling_, Apr 14 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE