# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a239909 Showing 1-1 of 1 %I A239909 #24 Feb 09 2024 11:16:10 %S A239909 1,1,2,3,5,9,15,26,45,77,133,229,394,679,1169,2013,3467,5970,10281, %T A239909 17705,30489,52505,90418,155707,268141,461761,795191,1369386,2358197, %U A239909 4061013,6993405,12043229,20739450,35715071,61504345,105915637,182395603,314100514 %N A239909 Arises from a construction of equiangular lines in complex space of dimension 2. %H A239909 Vincenzo Librandi, Table of n, a(n) for n = 1..1000 %H A239909 G. McConnell, Some non-standard ways to generate SIC-POVMs in dimensions 2 and 3, arXiiv preprint arXiv:1402.7330, 2014, p. 4. %H A239909 Index entries for linear recurrences with constant coefficients, signature (1,1,1,-1). %F A239909 From _Vincenzo Librandi_ Apr 09 2014: (Start) %F A239909 G.f.: x*(1-x^3)/(x^4-x^3-x^2-x+1). %F A239909 a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) for n>4. %F A239909 a(n) = a(n-1) + 2*a(n-3) + A116732(n-5) for n>4. (End) %t A239909 LinearRecurrence[{1, 1, 1, -1}, {1, 1, 2, 3}, 40] (* or *) CoefficientList[Series[(1 - x^3)/(x^4 - x^3 - x^2 - x + 1), {x, 0, 100}], x] (* _Vincenzo Librandi_, Apr 09 2014 *) %o A239909 (Magma) I:=[1,1,2,3]; [n le 4 select I[n] else Self(n-1)+Self(n-2)+Self(n-3)-Self(n-4): n in [1..50]]; %Y A239909 Cf. A116732. %K A239909 nonn,easy %O A239909 1,3 %A A239909 _N. J. A. Sloane_, Apr 09 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE