# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a237770 Showing 1-1 of 1 %I A237770 #55 Jan 22 2020 14:37:20 %S A237770 1,1,1,2,4,9,22,59,170,516,1658,5583,19683,72162,274796,1082439, %T A237770 4406706,18484332,79818616,353995743,1611041726,7510754022, %U A237770 35842380314,174850257639,871343536591,4430997592209,22978251206350,121410382810005,653225968918521 %N A237770 Number of standard Young tableaux with n cells without a succession v, v+1 in a row. %C A237770 A standard Young tableau (SYT) without a succession v, v+1 in a row is called a nonconsecutive tableau. %C A237770 Also the number of ballot sequences without two consecutive elements equal. A ballot sequence B is a string such that, for all prefixes P of B, h(i)>=h(j) for iTable of n, a(n) for n = 0..68 (terms 0..48 from Alois P. Heinz) %H A237770 Timothy Y. Chow, Henrik Eriksson and C. Kenneth Fan, Chess Tableaux, The Electronic Journal of Combinatorics, vol.11, no.2, (2005). %H A237770 S. Dulucq and O. Guibert, Stack words, standard tableaux and Baxter permutations, Disc. Math. 157 (1996), 91-106. %H A237770 Wikipedia, Young tableau %F A237770 a(n) = Sum_{k=1..A264078(n)} k * A264051(n,k). - _Alois P. Heinz_, Nov 02 2015 %e A237770 The a(5) = 9 such tableaux of 5 are: %e A237770 [1] [2] [3] [4] [5] [6] [7] [8] [9] %e A237770 135 13 135 13 13 14 14 15 1 %e A237770 24 24 2 25 2 25 2 2 2 %e A237770 5 4 4 4 3 3 3 3 %e A237770 5 5 4 4 %e A237770 5 %e A237770 The corresponding ballot sequences are: %e A237770 1: [ 0 1 0 1 0 ] %e A237770 2: [ 0 1 0 1 2 ] %e A237770 3: [ 0 1 0 2 0 ] %e A237770 4: [ 0 1 0 2 1 ] %e A237770 5: [ 0 1 0 2 3 ] %e A237770 6: [ 0 1 2 0 1 ] %e A237770 7: [ 0 1 2 0 3 ] %e A237770 8: [ 0 1 2 3 0 ] %e A237770 9: [ 0 1 2 3 4 ] %p A237770 h:= proc(l, j) option remember; `if`(l=[], 1, %p A237770 `if`(l[1]=0, h(subsop(1=[][], l), j-1), add( %p A237770 `if`(i<>j and l[i]>0 and (i=1 or l[i]>l[i-1]), %p A237770 h(subsop(i=l[i]-1, l), i), 0), i=1..nops(l)))) %p A237770 end: %p A237770 g:= proc(n, i, l) `if`(n=0 or i=1, h([1$n, l[]], 0), %p A237770 `if`(i<1, 0, g(n, i-1, l)+ %p A237770 `if`(i>n, 0, g(n-i, i, [i, l[]])))) %p A237770 end: %p A237770 a:= n-> g(n, n, []): %p A237770 seq(a(n), n=0..30); %p A237770 # second Maple program (counting ballot sequences): %p A237770 b:= proc(n, v, l) option remember; %p A237770 `if`(n<1, 1, add(`if`(i<>v and (i=1 or l[i-1]>l[i]), %p A237770 b(n-1, i, subsop(i=l[i]+1, l)), 0), i=1..nops(l))+ %p A237770 b(n-1, nops(l)+1, [l[], 1])) %p A237770 end: %p A237770 a:= proc(n) option remember; forget(b); b(n-1, 1, [1]) end: %p A237770 seq(a(n), n=0..30); %t A237770 b[n_, v_, l_List] := b[n, v, l] = If[n<1, 1, Sum[If[i != v && (i == 1 || l[[i-1]] > l[[i]]), b[n-1, i, ReplacePart[l, i -> l[[i]]+1]], 0], {i, 1, Length[l]}] + b[n-1, Length[l]+1, Append[l, 1]]]; a[n_] := a[n] = b[n-1, 1, {1}]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 06 2015, translated from 2nd Maple program *) %Y A237770 Cf. A000085 (all Young tableaux), A000957, A001181, A214021, A214087, A214159, A214875. %Y A237770 Cf. A238126 (tableaux with one succession), A238127 (two successions). %Y A237770 Cf. A264051, A264078. %K A237770 nonn %O A237770 0,4 %A A237770 _Joerg Arndt_ and _Alois P. Heinz_, Feb 13 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE