# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a236580
Showing 1-1 of 1
%I A236580 #16 Jun 10 2022 06:14:18
%S A236580 1,4,25,154,943,5773,35344,216388,1324801,8110882,49657576,304020556,
%T A236580 1861317163,11395616227,69767835259,427142397547,2615110919020,
%U A236580 16010597772667,98022320649478,600125959188877,3674175070596919,22494548423870416,137719270059617428
%N A236580 The number of tilings of a 6 X (4n) floor with 1 X 4 tetrominoes.
%C A236580 Tilings are counted irrespective of internal symmetry: Tilings that match each other after rotations and/or reflections are counted with their multiplicity.
%H A236580 Mudit Aggarwal and Samrith Ram, Generating functions for straight polyomino tilings of narrow rectangles, arXiv:2206.04437 [math.CO], 2022.
%H A236580 R. J. Mathar, Paving rectangular regions..., arXiv:1311.6135, Table 35.
%H A236580 R. J. Mathar, Tilings of Rectangular Regions by Rectangular Tiles: Counts Derived from Transfer Matrices, arXiv:1406.7788 [math.CO], eq. (26).
%H A236580 Index entries for linear recurrences with constant coefficients, signature (7,-6,4,-1).
%F A236580 G.f.: (1-x)^3/(-7*x+1+6*x^2-4*x^3+x^4).
%p A236580 g := (1-x)^3/(-7*x+1+6*x^2-4*x^3+x^4) ;
%p A236580 taylor(%,x=0,30) ;
%p A236580 gfun[seriestolist](%) ;
%Y A236580 Cf. A003269 (4Xn floor), A236579 - A236582.
%K A236580 easy,nonn
%O A236580 0,2
%A A236580 _R. J. Mathar_, Jan 29 2014
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE