# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a231188 Showing 1-1 of 1 %I A231188 #10 Dec 18 2013 05:18:45 %S A231188 0,1,0,1,-3,0,1,-2,1,5,0,-5,0,1,-3,0,1,-7,0,14,0,-7,0,1,-2,0,1,-3,0,9, %T A231188 0,-6,0,1,5,0,-5,0,1,-11,0,55,0,-77,0,44,0,-11,0,1,-1,1,13,0,-91,0, %U A231188 182,0,-156,0,65,0,-13,0,1,-7,0,14,0,-7,0,1,1,0,-8,0,14,0,-7,0,1,2,0,-4,0,1,17,0,-204,0,714,0,-1122,0,935,0,-442,0,119,0,-17,0,1,-3,0,9,0,-6,0,1 %N A231188 Coefficient table for the minimal polynomials of 2*sin(2*Pi/n). Rising powers of x. %C A231188 The length of row n is deg(n) + 1 = A093819(n) + 1, that is 2, 2, 3, 2, 5, 3, 7, 3, 7, 5, 11, 2, 13, 7, 9, 5, 17,... %C A231188 See A181871 for the coefficient table for the integer but non-monic minimal polynomials of sin(2*Pi/n), n>=1, called there pi(n, x). The present minimal polynomials of 2*sin(2*Pi/n) are integer and monic, and they are given by %C A231188 MP2sin2(n, x) = pi(n, x/2). %F A231188 a(n,m) = [x^m] MP2sin2(n, x), n>=1, m = 0, 1, ..., A093819(n), with the minimal polynomials of 2*sin(2*Pi/n), given above in a comment in terms of the ones for sin(2*Pi/n). %e A231188 The table a(n,m) starts: %e A231188 --------------------------------------------------------------------------------- %e A231188 n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ... %e A231188 1: 0 1 %e A231188 2: 0 1 %e A231188 3: -3 0 1 %e A231188 4: -2 1 %e A231188 5: 5 0 -5 0 1 %e A231188 6: -3 0 1 %e A231188 7: -7 0 14 0 -7 0 1 %e A231188 8: -2 0 1 %e A231188 9: -3 0 9 0 -6 0 1 %e A231188 10: 5 0 -5 0 1 %e A231188 11: -11 0 55 0 -77 0 44 0 -11 0 1 %e A231188 12: -1 1 %e A231188 13: 13 0 -91 0 182 0 -156 0 65 0 -13 0 1 %e A231188 14: -7 0 14 0 -7 0 1 %e A231188 15: 1 0 -8 0 14 0 -7 0 1 %e A231188 16: 2 0 -4 0 1 %e A231188 17: 17 0 -204 0 714 0 -1122 0 935 0 -442 0 119 0 -17 0 1 %e A231188 ... %Y A231188 Cf. A093819, A181871, A181872/A181872, A232624. %K A231188 sign,tabf %O A231188 1,5 %A A231188 _Wolfdieter Lang_, Nov 29 2013 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE