# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a228842 Showing 1-1 of 1 %I A228842 #25 Jun 30 2024 18:15:24 %S A228842 2,6,28,144,752,3936,20608,107904,564992,2958336,15490048,81106944, %T A228842 424681472,2223661056,11643240448,60964798464,319215828992, %U A228842 1671435780096,8751751364608,45824765067264,239941584945152,1256350449401856,6578336356630528,34444616342175744 %N A228842 Binomial transform of A014448. %C A228842 The binomial transform of this sequence is 2, 8, 42, 248,... = 2*A108404(n). %D A228842 C. Smith, A Treatise on Algebra, Macmillan, London, 5th ed., 1950, p. 360, Example 44. %H A228842 Colin Barker, Table of n, a(n) for n = 0..1000 %H A228842 P. Bhadouria, D. Jhala, and B. Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence B_4. %H A228842 Takao Komatsu, Asymmetric Circular Graph with Hosoya Index and Negative Continued Fractions, arXiv:2105.08277 [math.CO], 2021. %H A228842 Index entries for linear recurrences with constant coefficients, signature (6,-4). %F A228842 G.f.: 2*( 1-3*x ) / ( 1-6*x+4*x^2 ). %F A228842 a(n) = 2*A098648(n). %F A228842 From _Colin Barker_, Sep 21 2017: (Start) %F A228842 a(n) = (3-sqrt(5))^n + (3+sqrt(5))^n. %F A228842 a(n) = 6*a(n-1) - 4*a(n-2) for n>1. %F A228842 (End) %t A228842 CoefficientList[Series[2*(1 - 3 x)/(1 - 6 x + 4 x^2), {x, 0, 23}], x] (* _Michael De Vlieger_, Aug 26 2021 *) %t A228842 LinearRecurrence[{6,-4},{2,6},30] (* _Harvey P. Dale_, Jun 30 2024 *) %o A228842 (PARI) Vec(2*(1 - 3*x) / (1 - 6*x + 4*x^2) + O(x^30)) \\ _Colin Barker_, Sep 21 2017 %Y A228842 Cf. A014448, A108404, A098648. %Y A228842 When divided by 2^n this becomes(essentially) A005248. %K A228842 nonn,easy %O A228842 0,1 %A A228842 _R. J. Mathar_, Nov 10 2013 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE