# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a226086 Showing 1-1 of 1 %I A226086 #11 Sep 08 2022 08:46:05 %S A226086 1,64,1236,4096,-57450,79104,64232,262144,-66627,-3676800,2464572, %T A226086 5062656,8032766,4110848,-71008200,16777216,71112402,-4264128, %U A226086 136337060,-235315200,79390752,157732608,-1186563144,324009984,2079799375,514097024,-2052934200,263094272 %N A226086 Expansion of (2 * eta(q^2)^24 - eta(q)^16 * eta(q^4)^8)^3 / (eta(q)^4 * eta(q^2) * eta(q^4)^6)^4 in powers of q. %H A226086 G. C. Greubel, Table of n, a(n) for n = 1..2500 %F A226086 a(n) is multiplicative with a(2^n) = 64^n, a(p^e) = a(p) * a(p^(e-1)) - p^13 * a(p^(e-2)) if p>2. %F A226086 G.f. is a period 1 Fourier series which satisfies f(-1 / (2 t)) = 128 (t/i)^14 f(t) where q = exp(2 Pi i t). %F A226086 a(2*n) = 64 * a(n). %e A226086 G.f. = q + 64*q^2 + 1236*q^3 + 4096*q^4 - 57450*q^5 + 79104*q^6 + 64232*q^7 + ... %t A226086 eta[q_] := q^(1/24)*QPochhammer[q]; Drop[CoefficientList[Series[(2* eta[q^2]^24 - eta[q]^16*eta[q^4]^8)^3/(eta[q]^4*eta[q^2]*eta[q^4]^6)^4, {q, 0, 50}], q], 1] (* _G. C. Greubel_, Aug 09 2018 *) %o A226086 (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (2 * eta(x^2 + A)^24 - eta(x + A)^16 * eta(x^4 + A)^8)^3 / (eta(x + A)^4 * eta(x^2 + A) * eta(x^4 + A)^6)^4, n))}; %o A226086 (Sage) A = CuspForms( Gamma1(2), 14, prec=29) . basis(); A[0] + 64*A[1]; %o A226086 (Magma) A := Basis( CuspForms( Gamma1(2), 14), 29); A[1] + 64*A[2]; %K A226086 sign,mult %O A226086 1,2 %A A226086 _Michael Somos_, May 25 2013 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE