# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a225407 Showing 1-1 of 1 %I A225407 #21 Aug 13 2019 08:12:35 %S A225407 3,1,4,5,6,8,4,0,1,2,1,9,9,4,1,6,7,5,9,3,8,4,3,3,7,0,5,1,8,6,9,6,3,8, %T A225407 1,5,1,5,3,8,0,7,7,8,6,6,1,3,1,2,1,1,0,9,3,4,0,3,6,4,6,9,7,5,7,6,9,0, %U A225407 9,4,7,8,3,9,2,9,8,0,0,5,2,4,2,0,6,5,1,3,3,6,6,8,8,5,6,6,3,3,7,5 %N A225407 10-adic integer x such that x^3 = -3. %C A225407 This is the 10's complement of A225404. %H A225407 Seiichi Manyama, Table of n, a(n) for n = 0..10000 %F A225407 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 7 * (b(n-1)^3 + 3) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. - _Seiichi Manyama_, Aug 13 2019 %e A225407 3^3 == -7 (mod 10). %e A225407 13^3 == -7 (mod 10^2). %e A225407 413^3 == -7 (mod 10^3). %e A225407 5413^3 == -7 (mod 10^4). %e A225407 65413^3 == -7 (mod 10^5). %e A225407 865413^3 == -7 (mod 10^6). %o A225407 (PARI) n=0; for(i=1, 100, m=(10^i-3); for(x=0, 9, if(((n+(x*10^(i-1)))^3)%(10^i)==m, n=n+(x*10^(i-1)); print1(x", "); break))) %o A225407 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((-3+O(2^N))^(1/3), 2^N), Mod((-3+O(5^N))^(1/3), 5^N)))), N) \\ _Seiichi Manyama_, Aug 06 2019 %o A225407 (Ruby) %o A225407 def A225407(n) %o A225407 ary = [3] %o A225407 a = 3 %o A225407 n.times{|i| %o A225407 b = (a + 7 * (a ** 3 + 3)) % (10 ** (i + 2)) %o A225407 ary << (b - a) / (10 ** (i + 1)) %o A225407 a = b %o A225407 } %o A225407 ary %o A225407 end %o A225407 p A225407(100) # _Seiichi Manyama_, Aug 13 2019 %Y A225407 Cf. A225402, A225404, A309600. %K A225407 nonn,base %O A225407 0,1 %A A225407 _Aswini Vaidyanathan_, May 07 2013 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE