# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a215007 Showing 1-1 of 1 %I A215007 #41 Jul 03 2023 20:20:50 %S A215007 1,3,9,28,91,308,1078,3871,14161,52479,196196,737793,2785160,10540390, %T A215007 39955041,151615947,575723785,2187128524,8311078307,31587815308, %U A215007 120069510526,456434707519,1735184512425,6596692255391,25079305566420 %N A215007 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0)=1, a(1)=3, a(2)=9. %C A215007 The sequence {a(n)} we shall call the Berndt-type sequence of type 1 for the argument 2*Pi/7; our motivation comes from Berndt's et al. and my papers (see the first formula below, which is in agreement with the respective identities discussed in these papers). %C A215007 We note that a(n) = A105849(n) for n=0,1,...,5, and A105849(6) - a(6) = 1. Moreover we have a(n) = 2*A215008(n) - A215008(n+1). %D A215007 R. Witula, E. Hetmaniok, and D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012. %H A215007 G. C. Greubel, Table of n, a(n) for n = 0..1000 %H A215007 B. C. Berndt and A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575. %H A215007 B. C. Berndt and L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573. %H A215007 Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), 103-130. %H A215007 Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796. %H A215007 R. Wituła, P. Lorenc, M. Różański, and M. Szweda, Sums of the rational powers of roots of cubic polynomials, Zeszyty Naukowe Politechniki Slaskiej, Seria: Matematyka Stosowana z. 4, Nr. kol. 1920, 2014. %H A215007 Index entries for linear recurrences with constant coefficients, signature (7, -14, 7). %F A215007 a(n) = (1/sqrt(7))*(cot(8*Pi/7)*(s(1))^2n + cot(4*Pi/7)*(s(4))^2n + cot(2*Pi/7)*(s(2))^2n), where s(j) := 2*sin(2Pi*j/7). %F A215007 G.f.: (1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3). %p A215007 seq(coeff(series((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Oct 03 2019 %t A215007 LinearRecurrence[{7,-14,7}, {1,3,9}, 30] (* _G. C. Greubel_, Feb 01 2018 *) %o A215007 (PARI) Vec((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3)+O(x^30)) \\ _Charles R Greathouse IV_, Sep 27 2012 %o A215007 (Magma) R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3))) // _G. C. Greubel_, Feb 01 2018 %o A215007 (Sage) %o A215007 def A215007_list(prec): %o A215007 P. = PowerSeriesRing(ZZ, prec) %o A215007 return P((1-4*x+2*x^2)/(1-7*x+14*x^2-7*x^3)).list() %o A215007 A215007_list(30) # _G. C. Greubel_, Oct 03 2019 %o A215007 (GAP) a:=[1,3,9];; for n in [4..30] do a[n]:=7*(a[n-1]-2*a[n-2]+a[n-3]); od; a; # _G. C. Greubel_, Oct 03 2019 %Y A215007 Cf. A122068, A215008. %K A215007 nonn,easy %O A215007 0,2 %A A215007 _Roman Witula_, Jul 31 2012 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE