# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a214991 Showing 1-1 of 1 %I A214991 #20 Oct 28 2024 09:34:38 %S A214991 2,6,7,11,14,15,19,20,23,27,28,32,35,36,40,41,44,48,49,53,54,57,61,62, %T A214991 66,69,70,74,75,78,82,83,87,90,91,95,96,100,103,104,108,109,112,116, %U A214991 117,121,124,125,129,130,133,137,138,142,143,146,150,151,155 %N A214991 Second nearest integer to n*(1+golden ratio). %C A214991 Let {x} denote the fractional part of x. The second nearest integer to x is defined to be ceiling(x) if {x}<1/2 and floor(x) if {x}>=1/2. %C A214991 Let r = golden ratio. Then (a(n+1) - a(n) - 1) consists solely of 0's, 2's, and 3's. %C A214991 Positions of 0: ([n*r^2]) A001950 %C A214991 Positions of 2: ([n*r^3]) A004976 %H A214991 Clark Kimberling, Table of n, a(n) for n = 1..10000 %F A214991 a(n) = n + A214990(n). %e A214991 Let r = (3+sqrt(5))/2 = 1 + golden ratio, %e A214991 n . . n*r . . nearest integer . second nearest %e A214991 1 . . 2.618... . 3 . . . . . . . 2 = a(1) %e A214991 2 . . 5.236... . 5 . . . . . . . 6 = a(2) %e A214991 3 . . 7.854... . 8 . . . . . . . 7 = a(3) %e A214991 4 . . 10.472.. . 10. . . . . . . 11 = a(4) %e A214991 5 . . 13.090.. . 13. . . . . . . 14 = a(5) %t A214991 r = GoldenRatio^2; f[x_] := If[FractionalPart[x] < 1/2, Ceiling[x], Floor[x]] %t A214991 Table[f[r*n], {n, 1, 100}] %Y A214991 Cf. A001950, A004976, A214990. %K A214991 nonn,easy,changed %O A214991 1,1 %A A214991 _Clark Kimberling_, Oct 31 2012 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE