# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a201686 Showing 1-1 of 1 %I A201686 #13 Nov 26 2018 04:06:46 %S A201686 -1,-1,0,1,4,8,18,33,68,124,250,460,922,1714,3430,6433,12868,24308, %T A201686 48618,92376,184754,352714,705430,1352076,2704154,5200298,10400598, %U A201686 20058298,40116598,77558758,155117518,300540193,601080388,1166803108,2333606218,4537567648,9075135298,17672631898,35345263798,68923264408,137846528818 %N A201686 a(n) = binomial(n, [n/2]) - 2. %H A201686 J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178. See Table 3. %F A201686 Conjecture: +(n+1)*a(n) +2*(-n-1)*a(n-1) +(-3*n+7)*a(n-2) +2*(4*n-9)*a(n-3) +4*(-n+3)*a(n-4)=0. - _R. J. Mathar_, Jul 17 2014 %t A201686 Table[Binomial[n,Floor[n/2]]-2,{n,0,40}] (* _Harvey P. Dale_, Apr 12 2018 *) %Y A201686 Cf. A001405. %K A201686 sign %O A201686 0,5 %A A201686 _N. J. A. Sloane_, Dec 03 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE