# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a198368 Showing 1-1 of 1 %I A198368 #5 Mar 30 2012 18:57:54 %S A198368 6,0,6,0,7,7,7,8,3,6,4,8,6,2,6,4,5,3,6,6,5,7,9,7,7,5,7,9,9,0,5,6,2,9, %T A198368 1,0,5,7,8,9,9,1,3,1,8,1,7,8,8,5,7,2,2,2,5,3,4,2,4,7,5,8,6,3,2,8,9,9, %U A198368 8,4,2,0,5,8,9,6,2,9,7,9,1,6,6,8,0,4,3,0,9,4,1,8,4,6,8,0,6,3,2 %N A198368 Decimal expansion of greatest x having 4*x^2+3x=4*cos(x). %C A198368 See A197737 for a guide to related sequences. The Mathematica program includes a graph. %e A198368 least x: -1.128864420523986139477004663061889573... %e A198368 greatest x: 0.60607778364862645366579775799056291... %t A198368 a = 4; b = 3; c = 4; %t A198368 f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x] %t A198368 Plot[{f[x], g[x]}, {x, -2, 1}] %t A198368 r1 = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110] %t A198368 RealDigits[r1] (* A198367 *) %t A198368 r2 = x /. FindRoot[f[x] == g[x], {x, .60, .61}, WorkingPrecision -> 110] %t A198368 RealDigits[r2] (* A198368 *) %Y A198368 Cf. A197737. %K A198368 nonn,cons %O A198368 0,1 %A A198368 _Clark Kimberling_, Oct 24 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE