# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a198346 Showing 1-1 of 1 %I A198346 #5 Mar 30 2012 18:57:54 %S A198346 1,2,4,8,8,9,2,2,6,4,6,3,6,2,1,5,2,6,8,8,1,6,8,4,2,2,5,4,1,9,7,9,4,9, %T A198346 2,4,4,4,9,2,3,3,4,2,5,5,8,9,3,6,7,3,6,0,9,9,4,7,8,6,3,4,6,0,5,0,7,2, %U A198346 9,6,7,0,7,9,5,1,7,7,1,3,2,1,0,5,3,3,6,8,5,9,6,3,6,2,7,0,1,4,4 %N A198346 Decimal expansion of greatest x having 3*x^2-4x=-cos(x). %C A198346 See A197737 for a guide to related sequences. The Mathematica program includes a graph. %e A198346 least x: 0.310259191918510960781595559044242... %e A198346 greatest x: 1.2488922646362152688168422541979... %t A198346 a = 3; b = -4; c = -1; %t A198346 f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x] %t A198346 Plot[{f[x], g[x]}, {x, -1, 2}] %t A198346 r1 = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110] %t A198346 RealDigits[r1] (* A198345 *) %t A198346 r2 = x /. FindRoot[f[x] == g[x], {x, 1.24, 1.25}, WorkingPrecision -> 110] %t A198346 RealDigits[r2] (* A198346 *) %Y A198346 Cf. A197737. %K A198346 nonn,cons %O A198346 1,2 %A A198346 _Clark Kimberling_, Oct 23 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE