# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a191238 Showing 1-1 of 1 %I A191238 #31 Oct 20 2024 02:31:53 %S A191238 1,0,1,1,0,1,0,2,0,1,1,0,3,0,1,0,3,0,4,0,1,0,0,6,0,5,0,1,0,2,0,10,0,6, %T A191238 0,1,0,0,7,0,15,0,7,0,1,0,1,0,16,0,21,0,8,0,1,0,0,6,0,30,0,28,0,9,0,1, %U A191238 0,0,0,19,0,50,0,36,0,10,0,1,0,0,3,0,45,0,77,0,45,0,11,0,1,0,0,0,16,0,90,0,112,0,55,0,12,0,1 %N A191238 Triangle T(n,k) = coefficient of x^n in expansion of (x+x^3+x^5)^k. %C A191238 1. Riordan Array (1,x+x^3+x^5) without first column. %C A191238 2. Riordan Array (1+x^2+x^4,x+x^3+x^5) numbering triangle (0,0). %C A191238 3. For the g.f. 1/(1-x-x^3-x^5) we have a(n)=sum(k=1..n, T(n,k)) (see A060961). %C A191238 4. For the e.g.f. exp(1-x-x^3-x^5) we have a(n)=n!*sum(k=1..n, T(n,k)/k!) (see A191237). %C A191238 5. Bell Polynomial of second kind B(n,k){1,0,6,0,120,0,0,...,0}=n!/k!*T(n,k). %C A191238 For more formulas see preprints. %H A191238 Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3. %H A191238 Vladimir Kruchinin, Derivation of Bell Polynomials of the Second Kind, arXiv:1104.5065 [math.CO], 2011. %H A191238 Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013. %F A191238 T(n,k) = Sum_{j=0..k} binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1)/2. %e A191238 Triangle begins: %e A191238 1, %e A191238 0,1, %e A191238 1,0,1, %e A191238 0,2,0,1, %e A191238 1,0,3,0,1, %e A191238 0,3,0,4,0,1, %e A191238 0,0,6,0,5,0,1, %e A191238 0,2,0,10,0,6,0,1, %e A191238 0,0,7,0,15,0,7,0,1, %e A191238 0,1,0,16,0,21,0,8,0,1 %p A191238 A191238 := proc(n,k) %p A191238 add(binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1),j=0..k)/2 ; %p A191238 end proc: %p A191238 seq(seq(A191238(n,m),m=1..n),n=1..10) ;# _R. J. Mathar_, Dec 16 2015 %o A191238 (Maxima) %o A191238 T(n,k):=sum(binomial(j,((n-k-2*j)/2))*binomial(k,j)*((-1)^(n-k)+1),j,0,k)/2; %Y A191238 Cf. A060961 (row sums). %K A191238 nonn,tabl %O A191238 1,8 %A A191238 _Vladimir Kruchinin_, May 27 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE