# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a186694 Showing 1-1 of 1 %I A186694 #39 Apr 03 2023 10:36:12 %S A186694 212159,294001,505447,584141,595631,604171,872897,971767,1062599, %T A186694 1203623,1282529,1293671,1524181,1566691,1702357,1830661,2017963, %U A186694 2474431,2690201,3085553,3326489,3716213,3964169,4103917,4134953,4173921,4310617,4376703 %N A186694 Numbers ending in 1, 3, 7 or 9 such that changing any one decimal digit produces a composite number. %C A186694 Union of A050249 and A143641. %C A186694 This sequence is infinite because Terence Tao proved that sequence A050249 is infinite. %H A186694 Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1500 %H A186694 Chris Caldwell, The Prime Glossary, Weakly prime %H A186694 G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 212159 %H A186694 G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 17171...58369 (1000-digits) %H A186694 Terence Tao, A remark on primality testing and decimal expansions, Journal of the Australian Mathematical Society 91:3 (2011), pp. 405-413. %t A186694 primeProof[n_] := Module[{d, e, isPP, num}, d=IntegerDigits[n]; isPP=True; Do[e=d; e[[i]]=j; num=FromDigits[e]; If[num != n && PrimeQ[num], isPP=False; Break[]], {i, Length[d]}, {j, 0, 9}]; isPP]; Select[Range[1, 1000000, 2], Mod[#, 5] > 0 && primeProof[#] &] (* _T. D. Noe_, Feb 26 2011 *) %Y A186694 Cf. A050249, A045572, A143641. %K A186694 base,nonn %O A186694 1,1 %A A186694 _Arkadiusz Wesolowski_, Feb 25 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE