# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a184775 Showing 1-1 of 1 %I A184775 #25 Jul 29 2022 09:51:13 %S A184775 2,4,5,8,14,21,22,29,31,38,42,48,52,56,59,63,69,72,73,76,80,90,93,97, %T A184775 106,107,123,127,128,137,140,141,158,161,162,165,169,171,178,182,186, %U A184775 192,196,199,220,222,239,246,247,250,254,260,264,268,271,281,284,298,305,311,318 %N A184775 Numbers k such that floor(k*sqrt(2)) is prime. %C A184775 Chua, Park, & Smith prove a general result that implies that, for any m, there is a constant C(m) such that a(n+m) - a(n) < C(m) infinitely often. - _Charles R Greathouse IV_, Jul 01 2022 %H A184775 G. C. Greubel, Table of n, a(n) for n = 1..10000 %H A184775 Lynn Chua, Soohyun Park, and Geoffrey D. Smith, Bounded gaps between primes in special sequences, Proceedings of the AMS, Volume 143, Number 11 (November 2015), pp. 4597-4611. arXiv:1407.1747 [math.NT] %e A184775 See A184774. %t A184775 r=2^(1/2); s=r/(r-1); %t A184775 a[n_]:=Floor [n*r]; (* A001951 *) %t A184775 b[n_]:=Floor [n*s]; (* A001952 *) %t A184775 Table[a[n],{n,1,120}] %t A184775 t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]], {n,1,600}]; t1 %t A184775 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]], {n,1,600}]; t2 %t A184775 t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3,n]],{n,1,300}]; t3 %t A184775 t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}]; t4 %t A184775 t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}]; t5 %t A184775 t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6,n]],{n,1,300}]; t6 %t A184775 (* the lists t1,t2,t3,t4,t5,t6 match the sequences %t A184775 A184774, A184775, A184776 ,A184777, A184778, A184779 *) %o A184775 (PARI) isok(n) = isprime(floor(n*sqrt(2))); \\ _Michel Marcus_, Apr 10 2018 %o A184775 (PARI) is(n)=isprime(sqrtint(2*n^2)) \\ _Charles R Greathouse IV_, Jul 01 2022 %o A184775 (Python) %o A184775 from itertools import count, islice %o A184775 from math import isqrt %o A184775 from sympy import isprime %o A184775 def A184775_gen(): # generator of terms %o A184775 return filter(lambda k:isprime(isqrt(k**2<<1)), count(1)) %o A184775 A184775_list = list(islice(A184775_gen(),25)) # _Chai Wah Wu_, Jul 28 2022 %Y A184775 Cf. A001951, A184774, A184776. %K A184775 nonn,easy %O A184775 1,1 %A A184775 _Clark Kimberling_, Jan 21 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE