# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a184271 Showing 1-1 of 1 %I A184271 #48 Jul 05 2024 11:18:46 %S A184271 2,3,3,4,7,4,6,14,14,6,8,40,64,40,8,14,108,352,352,108,14,20,362,2192, %T A184271 4156,2192,362,20,36,1182,14624,52488,52488,14624,1182,36,60,4150, %U A184271 99880,699600,1342208,699600,99880,4150,60,108,14602,699252,9587580,35792568 %N A184271 Table read by antidiagonals: T(n,k) = number of distinct n X k toroidal binary arrays (n >= 1, k >= 1). %C A184271 This is a 2-dimensional generalization of binary necklaces (A000031). A toroidal array or necklace can be defined either as an equivalence class of matrices under all possible rotations of the sequence of rows and the sequence of columns, or as a matrix that is minimal among all possible rotations of its sequence of rows and its sequence of columns. - _Gus Wiseman_, Feb 04 2019 %H A184271 Alois P. Heinz, Antidiagonals n = 1..100, flattened (first 95 terms from R. H. Hardin) %H A184271 S. N. Ethier, Counting toroidal binary arrays, arXiv preprint arXiv:1301.2352, 2013 and J. Int. Seq. 16 (2013) #13.4.7 . %H A184271 S. N. Ethier and Jiyeon Lee, Counting toroidal binary arrays, II, arXiv:1502.03792v1 [math.CO], Feb 12, 2015 and J. Int. Seq. 18 (2015) # 15.8.3. %H A184271 Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016. %H A184271 Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023. %H A184271 Wikipedia, Pólya enumeration theorem %F A184271 T(n,k) = (1/(nk))*Sum_{ c divides n } Sum_{ d divides k } phi(c)*phi(d)*2^(nk/lcm(c,d)), where phi is A000010 and lcm stands for least common multiple. - _Stewart N. Ethier_, Aug 24 2012 %e A184271 1 2 3 4 5 6 7 %e A184271 ---------------------------------------------------------------------------- %e A184271 1: 2 3 4 6 8 14 20 %e A184271 2: 3 7 14 40 108 362 1182 %e A184271 3: 4 14 64 352 2192 14624 99880 %e A184271 4: 6 40 352 4156 52488 699600 9587580 %e A184271 5: 8 108 2192 52488 1342208 35792568 981706832 %e A184271 6: 14 362 14624 699600 35792568 1908897152 104715443852 %e A184271 7: 20 1182 99880 9587580 981706832 104715443852 11488774559744 %e A184271 8: 36 4150 699252 134223976 27487816992 5864063066500 %e A184271 9: 60 14602 4971184 1908881900 781874936816 %e A184271 10: 108 52588 35792568 27487869472 %e A184271 From _Gus Wiseman_, Feb 04 2019: (Start) %e A184271 Inequivalent representatives of the T(2,3) = 14 toroidal necklaces: %e A184271 [0 0 0] [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0 0 1] [0 0 1] %e A184271 [0 0 0] [0 0 1] [0 1 1] [1 1 1] [0 0 1] [0 1 0] [0 1 1] %e A184271 . %e A184271 [0 0 1] [0 0 1] [0 0 1] [0 1 1] [0 1 1] [0 1 1] [1 1 1] %e A184271 [1 0 1] [1 1 0] [1 1 1] [0 1 1] [1 0 1] [1 1 1] [1 1 1] %e A184271 (End) %t A184271 a[n_, k_] := Sum[If[Mod[n, c] == 0, Sum[If[Mod[k, d] == 0, EulerPhi[c] EulerPhi[d] 2^(n k/LCM[c, d]), 0], {d, 1, k}], 0], {c, 1, n}]/(n k) %t A184271 (* second program *) %t A184271 neckmatQ[m_]:=m==First[Union@@Table[RotateLeft[m,{i,j}],{i,Length[m]},{j,Length[First[m]]}]]; %t A184271 Table[Length[Select[Partition[#,n-k]&/@Tuples[{0,1},(n-k)*k],neckmatQ]],{n,8},{k,n-1}] (* _Gus Wiseman_, Feb 04 2019 *) %Y A184271 Columns 1-8 are A000031, A184264, A184265, A184266, A184267, A184268, A184269, A184270. %Y A184271 Main diagonal is A179043. %Y A184271 Cf. A001037 (binary Lyndon words), A008965, A323858, A323859 (binary toroidal necklaces of size n), A323861 (aperiodic version), A323865, A323870 (normal toroidal necklaces), A323872. %K A184271 nonn,tabl %O A184271 1,1 %A A184271 _R. H. Hardin_, Jan 10 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE