# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a183048 Showing 1-1 of 1 %I A183048 #15 May 04 2014 16:55:57 %S A183048 0,20,32,60,88,140,184,260,312,412,480,596,680,820,912,1076,1184,1364, %T A183048 1488,1692,1824,2052,2200,2444,2608,2876,3048,3340,3528,3836,4040, %U A183048 4372,4584,4940,5168,5540,5784,6180,6432 %N A183048 Sums of least number of knight's moves on boundaries of squares [-n,n]x[-n,n] on infinite chessboard. %C A183048 First difference sequence of A183047. %C A183048 Every term is divisible by 4. %F A183048 See A065775. %F A183048 Empirical g.f.: 4*x*(2*x^8+2*x^7-4*x^6-5*x^5-2*x^4-x^3-5*x^2-8*x-5) / ((x-1)^3*(x+1)^2*(x^2+x+1)). - _Colin Barker_, May 04 2014 %e A183048 Start with the square [-2,2]x[2,2], %e A183048 4 1 2 1 4 %e A183048 1 2 3 2 1 %e A183048 2 3 0 3 2 %e A183048 1 2 3 2 1 %e A183048 4 1 2 1 4, %e A183048 remove the square [-1,1]x[-1,1], %e A183048 2 3 4 %e A183048 3 0 3 %e A183048 2 3 2, %e A183048 and then add the remaining numbers: %e A183048 4+1+2+1+4+1+2+1+4+1+2+1+4+1+2+1 %e A183048 to get a(2)=32. %Y A183048 Cf. A065775, A183047. %K A183048 nonn %O A183048 0,2 %A A183048 _Clark Kimberling_, Dec 20 2010 %E A183048 Duplicate term 820 deleted by _Colin Barker_, Feb 19 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE