# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a182086 Showing 1-1 of 1 %I A182086 #16 Nov 27 2023 17:40:37 %S A182086 1,1,2,2,3,4,5,6,7,8,11,12,15,16,19,22,25,28,31,34,40,43,49,52,58,64, %T A182086 70,76,82,88,98,104,114,120,130,140,150,160,170,180,195,205,220,230, %U A182086 245,260,275,290,305,320,342,357,379,394,416,438,460,482,504,526 %N A182086 Number of ways of making change for n Pfennig using Deutschmark coins. %C A182086 The Pfennig was the subunit of the Deutsche Mark, the currency of Germany until the adoption of the Euro in 2002; the coins were (business strike): 1 Pfg, 2 Pfg, 5 Pfg, 10 Pfg, 50 Pfg, 1 DM = 100 Pfg, 2 DM and 5 DM; %C A182086 a(n) = A000008(n) for n < 50; a(50) = A000008(50) + 1 = 342; %C A182086 a(n) = A001312(n) for n < 200; a(200) = A001312(200) + 1 = 26905. %C A182086 Number of partitions of n into parts 1, 2, 5, 10, 50, 100, 200, and 500. - _Joerg Arndt_, Jul 08 2013 %H A182086 G. C. Greubel, Table of n, a(n) for n = 0..1000 %H A182086 Deutsche Bundesbank, Umlaufmuenzen %H A182086 Wikipedia, Deutsche Mark, Coins %H A182086 Index entries for sequences related to making change. %H A182086 Index entries for linear recurrences with constant coefficients, order 868. %F A182086 G.f.: 1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^50)*(1-x^100)*(1-x^200)*(1-x^500)). - _Joerg Arndt_, Jul 08 2013 %e A182086 Number of partitions of coin values into coin values: %e A182086 a(1) = #{1} = 1; %e A182086 a(2) = #{2, 1+1} = 2; %e A182086 a(5) = #{5, 2+2+1, 2+1+1+1, 1+1+1+1+1} = 4; %e A182086 a(10) = #{10, 5+5, 5+2+2+1, 5+2+1+1+1, 5+5x1, 2+2+2+2+2, 2+2+2+2+1+1, 2+2+2+1+1+1+1, 2+2+6x1, 2+8x1, 10x1} = 11; %e A182086 a(50) = #{50,10+10+10+10+10, 10+10+10+10+5+5, 10+10+10+10+5+2+2+1, 10+10+10+10+5+2+1+1+1, 10+10+10+10+5+10x1, ...} = 342; %e A182086 a(100) = 2499; %e A182086 a(200) = 26905; %e A182086 a(500) = 1229587. %t A182086 CoefficientList[Series[1/((1 - x)*(1 - x^2)*(1 - x^5)*(1 - x^10)*(1 - x^50)*(1 - x^100)*(1 - x^200)*(1 - x^500)), {x, 0, 50}], x] (* _G. C. Greubel_, Aug 20 2017 *) %o A182086 (Haskell) %o A182086 a182086 = p [1,2,5,10,50,100,200,500] where %o A182086 p _ 0 = 1; p [] _ = 0 %o A182086 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m %o A182086 (PARI) Vec(1/((1-x)*(1-x^2)*(1-x^5)*(1-x^10)*(1-x^50)*(1-x^100)*(1-x^200)*(1-x^500))+O(x^566)) \\ _Joerg Arndt_, Jul 08 2013 %Y A182086 Cf. A001364, A067996, A082593. %K A182086 nonn %O A182086 0,3 %A A182086 _Reinhard Zumkeller_, Apr 11 2012 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE