# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a177701 Showing 1-1 of 1 %I A177701 #32 Apr 07 2021 02:49:57 %S A177701 1,1,2,1,2,4,1,4,14,16,8,1,16,112,324,508,474,268,88,16,1,256,3584, %T A177701 22912,88832,233936,443936,628064,675456,557492,353740,171644,62878, %U A177701 17000,3264,416,32,1,65536,1835008,24576000,209715200,1281482752,5974786048,22114709504,66752724992 %N A177701 Triangle of coefficients of polynomials P_n(z) defined by the recursion P_0(z) = z+1; for n>=1, P_n(z) = z + Product_{k=0..n-1} P_k(z). %C A177701 Length of the first row is 2; for i>=2, length of the i-th row is 2^{i-2}+1. %H A177701 Alois P. Heinz, Table of n, a(n) for n = 1..1035 %H A177701 A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437, alternative link. %F A177701 Another recursion is: P_n(z)=z+P_(n-1)(z)(P_(n-1)(z)-z). %F A177701 Private values: P_n(0)=1; P_n(-1)=delta_(n,0)-1; {P_n(1)}=A000058; {P_n(2)}=A000215; {P_n(3)}={A000289(n+1)}; {P_n(4)}={A000324(n+1)}; {P_n(5)}={A001543(n+1)}; {P_n(6)}={A001544(n+1)}; {P_n(7)}={A067686(n)}; {P_n(8)}={A110360(n)}; {P_0(n)}={A000027(n+1)}; {P_1(n)}={A005408(n)}; {P_2(n)}={A056220(n+1)}. %e A177701 Triangle begins: %e A177701 1, 1; %e A177701 2, 1; %e A177701 2, 4, 1; %e A177701 4, 14, 16, 8, 1; %e A177701 16, 112, 324, 508, 474, 268, 88, 16, 1; %p A177701 p:= proc(n) option remember; %p A177701 z-> z+ `if`(n=0, 1, p(n-1)(z)*(p(n-1)(z)-z)) %p A177701 end: %p A177701 deg:= n-> `if`(n=0, 1, 2^(n-1)): %p A177701 T:= (n,k)-> coeff(p(n)(z), z, deg(n)-k): %p A177701 seq(seq(T(n,k), k=0..deg(n)), n=0..6); # _Alois P. Heinz_, Dec 13 2010 %t A177701 P[0][z_] := z + 1; %t A177701 P[n_][z_] := P[n][z] = z + Product[P[k][z], {k, 0, n-1}]; %t A177701 row[n_] := CoefficientList[P[n][z], z] // Reverse; %t A177701 Table[row[n], {n, 0, 6}] // Flatten (* _Jean-François Alcover_, Jun 11 2018 *) %Y A177701 Cf. A000058, A000215, A000289, A000324, A001543, A001544, A067686, A110360, A000027, A005408, A056220, A177888. First column gives: A165420. %K A177701 nonn,tabf %O A177701 1,3 %A A177701 _Vladimir Shevelev_, Dec 11 2010 %E A177701 More terms from _Alois P. Heinz_, Dec 13 2010 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE