# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a177189 Showing 1-1 of 1 %I A177189 #25 Sep 08 2022 08:45:53 %S A177189 0,0,0,1,2,4,6,9,13,18,24,32,41,52,64,78,94,112,132,155,180,208,238, %T A177189 271,307,346,388,434,483,536,592,652,716,784,856,933,1014,1100,1190, %U A177189 1285,1385,1490,1600,1716,1837,1964,2096,2234,2378,2528,2684 %N A177189 Partial sums of round(n^2/16). %C A177189 The round function is defined here by round(x) = floor(x + 1/2). %C A177189 There are several sequences of integers of the form round(n^2/k) for whose partial sums we can establish identities as following (only for k = 2, ..., 9, 11, 12, 13, 16, 17, 19, 20, 28, 29, 36, 44). %H A177189 Vincenzo Librandi, Table of n, a(n) for n = 0..885 %H A177189 Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. %F A177189 a(n) = round((2*n+1)*(2*n^2 + 2*n + 3)/192). %F A177189 a(n) = floor((n+3)*(2*n^2 - 3*n + 13)/96). %F A177189 a(n) = ceiling((n-2)*(2*n^2 + 7*n + 18)/96). %F A177189 a(n) = round((2*n^3 + 3*n^2 + 4*n)/96). %F A177189 a(n) = a(n-16) + (n+1)*(n-16) + 94, n > 15. %F A177189 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-8) - 3*a(n-9) + 3*a(n-10) - a(n-11) with g.f. x^3*(1 - x + x^2 + x^4 - x^3) / ( (1+x)*(1+x^2)*(1+x^4)*(x-1)^4 ). - _R. J. Mathar_, Dec 13 2010 %e A177189 a(16) = 0 + 0 + 0 + 1 + 1 + 2 + 2 + 3 + 4 + 5 + 6 + 8 + 9 + 11 + 12 + 14 + 16 = 94. %p A177189 seq(round((2*n^3+3*n^2+4*n)/96),n=0..50) %t A177189 Accumulate[Round[Range[0,50]^2/16]] (* _Harvey P. Dale_, Mar 16 2011 *) %o A177189 (Magma) [Floor((n+3)*(2*n^2-3*n+13)/96): n in [0..50]]; // _Vincenzo Librandi_, Apr 29 2011 %Y A177189 Cf. A177100, A177116. %K A177189 nonn,easy %O A177189 0,5 %A A177189 _Mircea Merca_, Dec 10 2010 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE