# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a173655 Showing 1-1 of 1 %I A173655 #32 Apr 10 2024 03:48:15 %S A173655 0,1,0,1,2,0,1,1,2,0,1,2,1,4,0,1,1,3,6,2,0,1,2,2,3,6,4,0,1,1,4,5,8,6, %T A173655 2,0,1,2,3,2,1,10,6,4,0,1,2,4,1,7,3,12,10,6,0,1,1,1,3,9,5,14,12,8,2,0, %U A173655 1,1,2,2,4,11,3,18,14,8,6,0,1,2,1,6,8,2,7,3,18,12,10,4,0 %N A173655 Triangle read by rows: T(n,k) = prime(n) mod prime(k), 0 < k <= n. %H A173655 G. C. Greubel, Rows n = 1..50 of the triangle, flattened %e A173655 Triangle begins as: %e A173655 0; %e A173655 1, 0; %e A173655 1, 2, 0; %e A173655 1, 1, 2, 0; %e A173655 1, 2, 1, 4, 0; %e A173655 1, 1, 3, 6, 2, 0; %e A173655 1, 2, 2, 3, 6, 4, 0; %e A173655 1, 1, 4, 5, 8, 6, 2, 0; %e A173655 1, 2, 3, 2, 1, 10, 6, 4, 0; %e A173655 1, 2, 4, 1, 7, 3, 12, 10, 6, 0; %p A173655 A173655 := proc(n,k) ithprime(n) mod ithprime(k) ;end proc: %p A173655 seq(seq(A173655(n,k),k=1..n),n=1..20) ; # _R. J. Mathar_, Nov 24 2010 %t A173655 Flatten[Table[Mod[Prime[n], Prime[Range[n]]], {n, 15}]] %o A173655 (PARI) forprime(p=2,40,forprime(q=2,p,print1(p%q", "))) \\ _Charles R Greathouse IV_, Dec 21 2011 %o A173655 (Magma) %o A173655 A173655:= func< n,k | NthPrime(n) mod NthPrime(k) >; %o A173655 [A173655(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Apr 10 2024 %o A173655 (SageMath) %o A173655 def A173655(n,k): return nth_prime(n)%nth_prime(k) %o A173655 flatten([[A173655(n,k) for k in range(1,n+1)] for n in range(1,13)]) # _G. C. Greubel_, Apr 10 2024 %Y A173655 Cf. A001223 (2nd diagonal), A033955 (row sums), A102647 (row products excluding 0's), A031131 (3rd diagonal after first 3 terms). %Y A173655 Cf. A172662, A174497, A174947, A174996, A175620. %K A173655 nonn,tabl %O A173655 1,5 %A A173655 _Juri-Stepan Gerasimov_, Nov 24 2010 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE