# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a167059 Showing 1-1 of 1 %I A167059 #14 Aug 23 2023 09:44:13 %S A167059 8,4032,1612800,631427328,246562692200,96244833484800, %T A167059 37566939748080392,14663279200231130112,5723424260979717196800, %U A167059 2233987356983360324068800,871977888467614764819315368,340353508793721676084268236800,132847991246505889127220947758952 %N A167059 Number of spanning trees in G X P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}}. %D A167059 F. Faase, On the number of specific spanning subgraphs of the graphs A X P_n, Ars Combin. 49 (1998), 129-154. %H A167059 P. Raff, Table of n, a(n) for n = 1..200 %H A167059 F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154. %H A167059 F. Faase, Counting Hamiltonian cycles in product graphs %H A167059 F. Faase, Results from the counting program %H A167059 P. Raff, Spanning Trees in Grid Graphs, arXiv:0809.2551 [math.CO], 2008. %H A167059 P. Raff, Analysis of the Number of Spanning Trees of G x P_n, where G = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}}. Contains sequence, recurrence, generating function, and more. %H A167059 P. Raff, Analysis of the Number of Spanning Trees of Grid Graphs. %H A167059 Index entries for sequences related to trees %F A167059 a(n) = 504 a(n-1) %F A167059 - 48706 a(n-2) %F A167059 + 1765008 a(n-3) %F A167059 - 29021617 a(n-4) %F A167059 + 239655024 a(n-5) %F A167059 - 1039298722 a(n-6) %F A167059 + 2447629128 a(n-7) %F A167059 - 3242171236 a(n-8) %F A167059 + 2447629128 a(n-9) %F A167059 - 1039298722 a(n-10) %F A167059 + 239655024 a(n-11) %F A167059 - 29021617 a(n-12) %F A167059 + 1765008 a(n-13) %F A167059 - 48706 a(n-14) %F A167059 + 504 a(n-15) %F A167059 - a(n-16) %F A167059 G.f.: -8x (x^14 -3710x^12 +104832x^11 -997954x^10 +3633840x^9 -4759203x^8 +4759203x^6 -3633840x^5 +997954x^4 -104832x^3 +3710x^2-1)/ (x^16 -504x^15 +48706x^14 -1765008x^13 +29021617x^12 -239655024x^11 +1039298722x^10 -2447629128x^9 +3242171236x^8 -2447629128x^7 +1039298722x^6 -239655024x^5 +29021617x^4 -1765008x^3 +48706x^2 -504x+1). %K A167059 nonn %O A167059 1,1 %A A167059 _Paul Raff_, Jun 01 2010 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE