# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a162201 Showing 1-1 of 1 %I A162201 #7 Mar 01 2019 23:33:15 %S A162201 0,2,0,3,-1,3,-1,3,-3,4,-2,5,-1,3,-3,6,-2,4,-3,3,-2,5,-3,7,-4,3,-1,3, %T A162201 -1,9,-7,5,-2,6,-4,4,-4,5,-3,6,-2,6,-4,3,-1,7,-10,8,-1,3,-3,4,-4,8,-4, %U A162201 6,-2,4,-3,3,-4,12,-7,3,-1,9,-8,8,-4,3,-3,7,-5,6,-3,5,-5,6,-4,9,-4,6,-4,4,-3 %N A162201 First differences of A162200. %C A162201 The absolute value of a(n) is also the length of the n-th vertical edge in the graph of the "mountain path" function for prime numbers. %C A162201 See A162200 for the length of the n-th horizontal component. %H A162201 Omar E. Pol, Graph of the mountain path function for prime numbers %H A162201 Omar E. Pol, Illustration: The mountain path of the primes %F A162201 From _R. J. Mathar_, Jul 15 2009: (Start) %F A162201 a(n) = A052288(n-1) if n >= 2, n even. %F A162201 a(n) = 2 - A052288(n-1) if n >= 3, n odd. (End) %p A162201 A031131 := proc(n) ithprime(n+2)-ithprime(n) ; end: A052288 := proc(n) A031131(n)/2 ; end: A160173 := proc(n) if n <= 2 then 2*(n-1); elif n mod 2 = 0 then A052288(n-1) ; else 2-A052288(n-1) ; fi; end: seq(A160173(n),n=1..150) ; # _R. J. Mathar_, Jul 15 2009 %Y A162201 Cf. A000040, A006005, A008578, A162200, A162202, A162203, A162340, A162341, A162342, A162343, A162344. %K A162201 easy,sign %O A162201 1,2 %A A162201 _Omar E. Pol_, Jun 28 2009 %E A162201 Edited by _Omar E. Pol_, Jul 02 2009 %E A162201 More terms from _R. J. Mathar_, Jul 15 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE