# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a157708 Showing 1-1 of 1 %I A157708 #2 Mar 30 2012 18:59:44 %S A157708 18,254,1571,6335,19615,50743,115234,237066,451320,807180,1371293, %T A157708 2231489,3500861,5322205,7872820,11369668,16074894,22301706,30420615, %U A157708 40866035,54143243,70835699,91612726 %N A157708 The z^2 coefficients of the polynomials in the GF4 denominators of A156933 %C A157708 See A157705 for background information. %F A157708 a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7) %F A157708 a(n) = 1/2*n^6+5/2*n^5+41/8*n^4+67/12*n^3+27/8*n^2+11/12*n %F A157708 G.f.: (18 + 128*z + 171*z^2 + 42*z^3 + z^4)/(1-z)^7 %p A157708 nmax:=23; for n from 0 to nmax do fz(n):=product((1-(2*n+1-2*k)*z)^(3*k+1), k=0..n); c(n):= coeff(fz(n),z,2); end do: a:=n-> c(n): seq(a(n), n=1..nmax); %Y A157708 Cf. A156933, A157705 %K A157708 easy,nonn %O A157708 1,1 %A A157708 _Johannes W. Meijer_, Mar 07 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE