# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a154690 Showing 1-1 of 1 %I A154690 #15 Jan 06 2019 06:08:26 %S A154690 2,3,3,5,8,5,9,18,18,9,17,40,48,40,17,33,90,120,120,90,33,65,204,300, %T A154690 320,300,204,65,129,462,756,840,840,756,462,129,257,1040,1904,2240, %U A154690 2240,2240,1904,1040,257,513,2322,4752,6048,6048,6048,6048,4752,2322,513 %N A154690 Triangle read by rows: T(n,m) = (2^(n-m) + 2^m)*binomial(n,m), 0 <= m <= n. %C A154690 Row sums are A025192(n+1). %H A154690 A. Lakhtakia, R. Messier, V. K. Varadan, V. V. Varadan, Use of combinatorial algebra for diffusion on fractals, Physical Review A, volume 34, Number 3 (1986) p. 2502, Fig. 3. %F A154690 T(n,m) = A007318(n,m)*(2^(n-m) + 2^m). %e A154690 2; %e A154690 3, 3; %e A154690 5, 8, 5; %e A154690 9, 18, 18, 9; %e A154690 17, 40, 48, 40, 17; %e A154690 33, 90, 120, 120, 90, 33; %e A154690 65, 204, 300, 320, 300, 204, 65; %e A154690 129, 462, 756, 840, 840, 756, 462, 129; %e A154690 257, 1040, 1904, 2240, 2240, 2240, 1904, 1040, 257; %e A154690 513, 2322, 4752, 6048, 6048, 6048, 6048, 4752, 2322, 513; %e A154690 1025, 5140, 11700, 16320, 16800, 16128, 16800, 16320, 11700, 5140, 1025; %p A154690 A154690 := proc(n,m) binomial(n,m)*(2^(n-m)+2^m) ; end proc: # _R. J. Mathar_, Jan 13 2011 %t A154690 t[n_, m_] := (2^(n - m) + 2^m) Binomial[n, m]; Table[ t[n, m], {n, 0, 9}, {m, 0, n}] // Flatten %t A154690 (* alternate program *) %t A154690 Table[Table[ Sum[Binomial[n, m]*Binomial[m, k] + Binomial[n, n - m]*Binomial[m, m - k], {k, 0, n}]/2, {m, 0, n}] %t A154690 + Reverse[ Table[Sum[ Binomial[n, m]*Binomial[m, k] + Binomial[n, n - m]*Binomial[m, m - k], {k, 0, n}]/2, {m, 0, n}]], {n, 0, 10}] (* _Roger L. Bagula_, Oct 14 2010 *) %Y A154690 Cf. A025192. %K A154690 nonn,tabl,easy %O A154690 0,1 %A A154690 _Roger L. Bagula_ and _Gary W. Adamson_, Jan 14 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE